• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų pranešimų santraukos / Conference and Meeting Abstracts
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų pranešimų santraukos / Conference and Meeting Abstracts
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of user fatigue based on input behavior

Thumbnail
Data
2019
Autorius
Mažeika, Dalius
Dunovski, Kšyštof
Metaduomenys
Rodyti detalų aprašą
Santrauka
Most of the computer users suffer from mental and physical fatigue. A tired person can make mistakes and violate sensitive data integrity or cause other problems in IT systems. Thus it is vital to keep the exhaustion of the user in check. In this research, we address the problem of identifying user fatigue level through the analysis of input behavior from the mouse and keyboard. Firstly, a specialized tool was developed, which was used to gather data about the keystroke dynamics and mouse motion characteristics. The following data were acquired from the keyboard: up-down, down-down, and holding time of the keys as well as keystroke frequency. Motion speed and hold time of the mouse key were gathered from the mouse. After the tool was created, a static text, as well as a combination of mouse inputs, were given for the volunteered users to make inputs. Corresponding data was gathered and labeled according to the user fatigue level. Neural network, K-Means as well as classification and regression tree algorithms were used to build user fatigue prediction models. Investigation on different datasets was performed, and the correlation between results obtained from keyboard and mouse datasets was analyzed. Analysis of the resulting accuracies of the models was performed as well, and corresponding conclusions about the capability of predicting user fatigue based on input behavior were made.
Paskelbimo data (metai)
2019
URI
https://etalpykla.vilniustech.lt/handle/123456789/148491
Kolekcijos
  • Konferencijų pranešimų santraukos / Conference and Meeting Abstracts [3431]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis