• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Revealing the unknown: real-time recognition of Galápagos snake species using deep learning

Thumbnail
View/Open
elaba57984540_Revealing the unknown_real-time recognition of Galápagos dnake dpecies using deep learning.pdf (700.6Kb)
Revealing the Unknown. Real-Time Recognition of Gal?pagos Snake Species Using Deep Learning.pdf (2.906Mb)
Date
2020
Author
Patel, Anika
Cheung, Lisa
Khatod, Nandini
Matijošaitienė, Irina
Arteaga, Alejandro
Gilkey Jr., Joseph W.
Metadata
Show full item record
Abstract
Real-time identification of wildlife is an upcoming and promising tool for the preservation of wildlife. In this research project, we aimed to use object detection and image classification for the racer snakes of the Galápagos Islands, Ecuador. The final target of this project was to build an artificial intelligence (AI) platform, in terms of a web or mobile application, which would serve as a real-time decision making and supporting mechanism for the visitors and park rangers of the Galápagos Islands, to correctly identify a snake species from the user’s uploaded image. Using the deep learning and machine learning algorithms and libraries, we modified and successfully implemented four region-based convolutional neural network (R-CNN) architectures (models for image classification): Inception V2, ResNet, MobileNet, and VGG16. Inception V2, ResNet and VGG16 reached an overall accuracy of 75%.
Issue date (year)
2020
URI
https://etalpykla.vilniustech.lt/handle/123456789/150112
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister