Rodyti trumpą aprašą

dc.contributor.authorPatel, Anika
dc.contributor.authorCheung, Lisa
dc.contributor.authorKhatod, Nandini
dc.contributor.authorMatijošaitienė, Irina
dc.contributor.authorArteaga, Alejandro
dc.contributor.authorGilkey Jr., Joseph W.
dc.date.accessioned2023-09-18T20:28:34Z
dc.date.available2023-09-18T20:28:34Z
dc.date.issued2020
dc.identifier.issn2076-2615
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150112
dc.description.abstractReal-time identification of wildlife is an upcoming and promising tool for the preservation of wildlife. In this research project, we aimed to use object detection and image classification for the racer snakes of the Galápagos Islands, Ecuador. The final target of this project was to build an artificial intelligence (AI) platform, in terms of a web or mobile application, which would serve as a real-time decision making and supporting mechanism for the visitors and park rangers of the Galápagos Islands, to correctly identify a snake species from the user’s uploaded image. Using the deep learning and machine learning algorithms and libraries, we modified and successfully implemented four region-based convolutional neural network (R-CNN) architectures (models for image classification): Inception V2, ResNet, MobileNet, and VGG16. Inception V2, ResNet and VGG16 reached an overall accuracy of 75%.eng
dc.formatPDF
dc.format.extentp. 1-16
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyMEDLINE
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:57984540/datastreams/MAIN/content
dc.titleRevealing the unknown: real-time recognition of Galápagos snake species using deep learning
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references37
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionSaint Peter’s University, Jersey City, NJ, USA
dc.contributor.institutionSaint Peter’s University, Jersey City, NJ, USA Kauno technologijos universitetas Vilniaus Gedimino technikos universitetas
dc.contributor.institutionTropical Herping, Quito, Ecuador
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 004 - Aplinkos inžinerija / Environmental engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enartificial intelligence (AI) platform
dc.subject.endeep learning
dc.subject.enGalápagos Islands
dc.subject.enimage classification
dc.subject.enmachine learning
dc.subject.enPseudalsophis
dc.subject.enracer snake
dc.subject.enregion-based convolutional neural network (R-CNN)
dc.subject.ensnake species
dcterms.sourcetitleAnimals
dc.description.issueiss. 5
dc.description.volumevol. 10
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi1
dc.identifier.doi32384793
dc.identifier.doi2-s2.0-85084356996
dc.identifier.doi000540228300057
dc.identifier.doi10.3390/ani10050806
dc.identifier.elaba57984540


Šio įrašo failai

Thumbnail
Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą