Rodyti trumpą aprašą

dc.contributor.authorŠumanas, Marius
dc.contributor.authorPetronis, Algirdas
dc.contributor.authorBučinskas, Vytautas
dc.contributor.authorMačerauskas, Eugenijus
dc.contributor.authorMorkvėnaitė-Vilkončienė, Inga
dc.contributor.authorDzedzickis, Andrius
dc.contributor.authorSubačiūtė-Žemaitienė, Jurga
dc.date.accessioned2023-09-18T20:29:15Z
dc.date.available2023-09-18T20:29:15Z
dc.date.issued2020
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150307
dc.description.abstractImplementing of modern artificial intellect (AI) and machine learning (ML) for existing machinery can add value to their existing capabilities and technical characteristics. Machine learning is next step towards new innovations and stronger competitions in the market. Implementation of (ML) in the area of robotics requires some analysis of existing methods in order of correct of implemented method. This article sums up machine learning methods used in industry and presents successful implementation of deep Q-learning algorithm, implemented in robot static accuracy improvement using variable carrying load. Improvement reaches 0.07 mm for initial value equal to 0.1 mm. Finally, conclusions on implementing ML methods are drawn.eng
dc.formatPDF
dc.format.extentp. 1-6
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyIEEE Xplore
dc.source.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9108858
dc.titleImplementation of machine learning method for positioning accuracy improvement in industrial robot
dc.typeStraipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB
dcterms.references17
dc.type.pubtypeP1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.vgtuprioritizedfieldsMC0101 - Mechatroninės gamybos sistemos Pramonė 4.0 platformoje / Mechatronic for Industry 4.0 Production System
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.enmachine learning
dc.subject.enindustry
dc.subject.enpositioning accuracy
dc.subject.enrobotics
dc.subject.endeep Q-learning
dcterms.sourcetitle2020 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 30 April 2020, Vilnius, Lithuania: proceedings of the conference / organized by Vilnius Gediminas Technical University
dc.publisher.nameIEEE
dc.publisher.cityNew York
dc.identifier.doi10.1109/eStream50540.2020.9108858
dc.identifier.elaba62491870


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą