dc.contributor.author | Šumanas, Marius | |
dc.contributor.author | Petronis, Algirdas | |
dc.contributor.author | Bučinskas, Vytautas | |
dc.contributor.author | Mačerauskas, Eugenijus | |
dc.contributor.author | Morkvėnaitė-Vilkončienė, Inga | |
dc.contributor.author | Dzedzickis, Andrius | |
dc.contributor.author | Subačiūtė-Žemaitienė, Jurga | |
dc.date.accessioned | 2023-09-18T20:29:15Z | |
dc.date.available | 2023-09-18T20:29:15Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/150307 | |
dc.description.abstract | Implementing of modern artificial intellect (AI) and machine learning (ML) for existing machinery can add value to their existing capabilities and technical characteristics. Machine learning is next step towards new innovations and stronger competitions in the market. Implementation of (ML) in the area of robotics requires some analysis of existing methods in order of correct of implemented method. This article sums up machine learning methods used in industry and presents successful implementation of deep Q-learning algorithm, implemented in robot static accuracy improvement using variable carrying load. Improvement reaches 0.07 mm for initial value equal to 0.1 mm. Finally, conclusions on implementing ML methods are drawn. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-6 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.source.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9108858 | |
dc.title | Implementation of machine learning method for positioning accuracy improvement in industrial robot | |
dc.type | Straipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB | |
dcterms.references | 17 | |
dc.type.pubtype | P1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Mechanikos fakultetas / Faculty of Mechanics | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | T 009 - Mechanikos inžinerija / Mechanical enginering | |
dc.subject.vgtuprioritizedfields | MC0101 - Mechatroninės gamybos sistemos Pramonė 4.0 platformoje / Mechatronic for Industry 4.0 Production System | |
dc.subject.ltspecializations | L104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies | |
dc.subject.en | machine learning | |
dc.subject.en | industry | |
dc.subject.en | positioning accuracy | |
dc.subject.en | robotics | |
dc.subject.en | deep Q-learning | |
dcterms.sourcetitle | 2020 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 30 April 2020, Vilnius, Lithuania: proceedings of the conference / organized by Vilnius Gediminas Technical University | |
dc.publisher.name | IEEE | |
dc.publisher.city | New York | |
dc.identifier.doi | 10.1109/eStream50540.2020.9108858 | |
dc.identifier.elaba | 62491870 | |