• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Early retinal function deficit without prominent morphological changes in the R6/2 mouse model of huntington’s disease

Thumbnail
View/Open
plo_Vol9_No12_1-24_Ragauskas.pdf (14.86Mb)
Date
2014
Author
Ragauskas, Symantas
Leinonen, Henri
Puranen, Jooseppi
Ronkko, Seppo
Nymark, Soile
Gurevičius, Kęstutis
Lipponen, Arto
Kontkanen, Outi
Puolivali, Jukka
Tanila, Heikki
Kalesnykas, Giedrius
Metadata
Show full item record
Abstract
Huntington’s disease (HD) is an inherited neurodegenerative disorder that primarily affects the medium-size GABAergic neurons of striatum. The R6/2 mouse line is one of the most widely used animal models of HD. Previously the hallmarks of HDrelated pathology have been detected in photoreceptors and interneurons of R6/2 mouse retina. Here we aimed to explore the survival of retinal ganglion cells (RGCs) and functional integrity of distinct retinal cell populations in R6/2 mice. The pattern electroretinography (PERG) signal was lost at the age of 8 weeks in R6/2 mice in contrast to the situation in wild-type (WT) littermates. This defect may be attributable to a major reduction in photopic ERG responses in R6/2 mice which was more evident in b- than a-wave amplitudes. At the age of 4 weeks R6/2 mice had predominantly the soluble form of mutant huntingtin protein (mHtt) in the RGC layer cells, whereas the aggregated form of mHtt was found in the majority of those cells from the 12-week-old R6/2 mice and onwards. Retinal astrocytes did not contain mHtt deposits. The total numbers of RGC layer cells, retinal astrocytes as well as optic nerve axons did not differ between 18-week-old R6/2 mice and their WT controls. Our data indicate that mHtt deposition does not cause RGC degeneration or retinal astrocyte loss in R6/2 mice even at a late stage of HDrelated pathology. However, due to functional deficits in the rod- and conepathways, the R6/2 mice suffer progressive deficits in visual capabilities starting as early as 4 weeks; at 8 weeks there is severe impairment. This should be taken into account in any behavioral testing conducted in R6/2 mice.
Issue date (year)
2014
URI
https://etalpykla.vilniustech.lt/handle/123456789/150771
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister