Aspects of nanospacecraft design for main-belt sailing voyage
Data
2021Autorius
Iakubivskyi, Iaroslav
Mačiulis, Laurynas
Janhunen, Pekka
Dalbins, Janis
Noorma, Mart
Slavinskis, Andris
Metaduomenys
Rodyti detalų aprašąSantrauka
We present a detailed mechanical and thermal analysis of a stand-alone nanospacecraft that performs asteroid flybys in the main asteroid belt (2.75 AU) and one Earth flyby at the end of the mission to return the gathered data. A fleet of such nanospacecraft (<10 kg) has been proposed as part of the Multi-Asteroid Touring mission concept, a nearly propellantless mission where the electric solar wind sail (E-sail) is used for primary propulsion. The fleet makes flybys of thus far poorly characterised asteroid populations in the main belt and downlinks scientific data during the returning Earth flyby. The spacecraft size is close to a three-unit cubesat with a mass of less than 6 kg. The spacecraft is designed for a 3.2-year round trip. A 20-km-long E-sail tether is used. A remote unit is attached to the tether's tip and stowed inside the spacecraft before the E-sail commissioning. The remote unit is slightly smaller than a one-unit cubesat with a mass of approximately 750 g. With an electrospray thruster, it provides angular momentum during tether deployment and spin-rate management while operating the E-sail. The selection of materials and configurations is optimised for thermal environment as well as to minimise the mass budget. This paper analyses the main spacecraft and remote-unit architectures along with deployment and operation strategies from a structural point of view, and thermal analysis for both bodies.