Rodyti trumpą aprašą

dc.contributor.authorIakubivskyi, Iaroslav
dc.contributor.authorMačiulis, Laurynas
dc.contributor.authorJanhunen, Pekka
dc.contributor.authorDalbins, Janis
dc.contributor.authorNoorma, Mart
dc.contributor.authorSlavinskis, Andris
dc.date.accessioned2023-09-18T20:34:04Z
dc.date.available2023-09-18T20:34:04Z
dc.date.issued2021
dc.identifier.issn0273-1177
dc.identifier.other(SCOPUS_ID)85092222218
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/150883
dc.description.abstractWe present a detailed mechanical and thermal analysis of a stand-alone nanospacecraft that performs asteroid flybys in the main asteroid belt (2.75 AU) and one Earth flyby at the end of the mission to return the gathered data. A fleet of such nanospacecraft (<10 kg) has been proposed as part of the Multi-Asteroid Touring mission concept, a nearly propellantless mission where the electric solar wind sail (E-sail) is used for primary propulsion. The fleet makes flybys of thus far poorly characterised asteroid populations in the main belt and downlinks scientific data during the returning Earth flyby. The spacecraft size is close to a three-unit cubesat with a mass of less than 6 kg. The spacecraft is designed for a 3.2-year round trip. A 20-km-long E-sail tether is used. A remote unit is attached to the tether's tip and stowed inside the spacecraft before the E-sail commissioning. The remote unit is slightly smaller than a one-unit cubesat with a mass of approximately 750 g. With an electrospray thruster, it provides angular momentum during tether deployment and spin-rate management while operating the E-sail. The selection of materials and configurations is optimised for thermal environment as well as to minimise the mass budget. This paper analyses the main spacecraft and remote-unit architectures along with deployment and operation strategies from a structural point of view, and thermal analysis for both bodies.eng
dc.formatPDF
dc.format.extentp. 2957-2980
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0273117720305159?via%3Dihub
dc.source.urihttps://doi.org/10.1016/j.asr.2020.07.023
dc.titleAspects of nanospacecraft design for main-belt sailing voyage
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.references76
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionUniversity of Tartu
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionErik Palménin aukio 1
dc.contributor.institutionUniversity of Tartu Aalto University School of Electrical Engineering
dc.contributor.facultyAntano Gustaičio aviacijos institutas / Antanas Gustaitis Aviation Institute
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsFM0101 - Fizinių, technologinių ir ekonominių procesų matematiniai modeliai / Mathematical models of physical, technological and economic processes
dc.subject.ltspecializationsL104 - Nauji gamybos procesai, medžiagos ir technologijos / New production processes, materials and technologies
dc.subject.ennanospacecraft
dc.subject.enE-sail
dc.subject.endeep-space cubesat
dc.subject.enstructural design
dc.subject.enthermal desig
dcterms.sourcetitleAdvances in space research
dc.description.issueiss. 9
dc.description.volumevol. 67
dc.publisher.nameElsevier
dc.publisher.cityOxford, Kidlington
dc.identifier.doi2-s2.0-85092222218
dc.identifier.doiS0273117720305159
dc.identifier.doi85092222218
dc.identifier.doi0
dc.identifier.doi000636042300032
dc.identifier.doi10.1016/j.asr.2020.07.023
dc.identifier.elaba72526246


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą