• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of GPU and CPU efficiency while solving heat conduction problems

Thumbnail
Date
2020
Author
Semenenko, Julija
Kolesau, Aliaksei
Starikovičius, Vadimas
Mackūnas, Artūras
Šešok, Dmitrij
Metadata
Show full item record
Abstract
Overview of GPU usage while solving different engineering problems, comparison between CPU and GPU computations and overview of the heat conduction problem are provided in this paper. The Jacobi iterative algorithm was implemented by using Python, TensorFlow GPU library and NVIDIA CUDA technology. Numerical experiments were conducted with 6 CPUs and 4 GPUs. The fastest used GPU completed the calculations 19 times faster than the slowest CPU. On average, GPU was from 9 to 11 times faster than CPU. Significant relative speed-up in GPU calculations starts when the matrix contains at least 400^2 floating-point numbers.
 
Šiame straipsnyje apžvelgtas GPU taikymas įvairiems inžineriniams uždaviniams spręsti, palyginti skaičiavimai naudojant CPU ir GPU, aprašytas šilumos laidumo uždavinys. Įgyvendintas Jakobio metodas naudojant „Python“, „TensorFlow GPU“ biblioteką ir NVIDIA CUDA technologijas. Atlikti skaitiniai eksperimentai naudojant šešis CPU ir keturis GPU įtaisus. Greičiausias nagrinėtas GPU įvykdė skaičiavimus 19 kartų greičiau negu lėčiausias CPU. Naudojant GPU, vidutiniškai skaičiavimai buvo atliekami nuo 9 iki 11 kartų greičiau nei su CPU. Didelis santykinis GPU pagreitėjimas vyko, kai lygiagrečiai buvo apdorojama bent 400 2 realiųjų skaičių.
 
Issue date (year)
2020
URI
https://etalpykla.vilniustech.lt/handle/123456789/150915
Collections
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources [8559]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister