dc.contributor.author | Vaimann, Toomas | |
dc.contributor.author | Rassolkin, Anton | |
dc.contributor.author | Kallaste, Ants | |
dc.contributor.author | Pomarnacki, Raimondas | |
dc.contributor.author | Belahcen, Anouar | |
dc.contributor.author | Hyunh, Van Khang | |
dc.date.accessioned | 2023-09-18T20:34:20Z | |
dc.date.available | 2023-09-18T20:34:20Z | |
dc.date.issued | 2020 | |
dc.identifier.other | (SCOPUS_ID)85084418022 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/150953 | |
dc.description.abstract | Diagnostics and prognostics of electrical energy conversion systems are moving forward with the rapid development of IT and artificial intelligence possibilities. This also broadens the horizons for classical and advanced condition and operation monitoring techniques, resulting in more accurate fault detection, degradation prognosis and calculation of remaining life of energy conversion systems, utilized in every aspect and field of industry today. This paper gives an overview of the necessity for condition monitoring and diagnostics of the mentioned systems, explaining the classical and advanced techniques for diagnostics. Methodology to diagnose and prognose the energy conversion units, where classical maintenance techniques are not sufficient in the economic, environmental and safety reasons is proposed. An extensive state of art in the field of diagnostics, regarding the aforementioned problems and techniques is provided. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-2 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.source.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9069566 | |
dc.subject | H600 - Elektronikos ir elektros inžinerija / Electronic and electrical engineering | |
dc.title | Artificial intelligence in monitoring and diagnostics of electrical energy conversion systems | |
dc.type | Straipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB | |
dcterms.references | 40 | |
dc.type.pubtype | P1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB | |
dc.contributor.institution | Tallinn University of Technology | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Aalto University | |
dc.contributor.institution | University of Agder | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.vgtuprioritizedfields | IK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | artificial intelligence | |
dc.subject.en | energy conversion | |
dc.subject.en | fault detection | |
dc.subject.en | machine learning | |
dcterms.sourcetitle | 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), Moscow, Russia, January 27–30, 2020: proceedings | |
dc.publisher.name | IEEE | |
dc.publisher.city | Piscataway, NJ | |
dc.identifier.doi | 2-s2.0-85084418022 | |
dc.identifier.doi | 85084418022 | |
dc.identifier.doi | 0 | |
dc.identifier.doi | 10.1109/IWED48848.2020.9069566 | |
dc.identifier.elaba | 73919376 | |