An improved cocoso method with a maximum variance optimization model for cloud service provider selection
Data
2020Autorius
Lai, Han
Liao, Huchang
Wen, Zhi
Zavadskas, Edmundas Kazimieras
Al-Barakati, Abdullah
Metaduomenys
Rodyti detalų aprašąSantrauka
With the rapid growth of available online cloud services and providers for customers, the selection of cloud service providers plays a crucial role in on-demand service selection on a subscription basis. Selecting a suitable cloud service provider requires a careful analysis and a reasonable ranking method. In this study, an improved combined compromise solution (CoCoSo) method is proposed to identify the ranking of cloud service providers. Based on the original CoCoSo method, we analyze the defects of the final aggregation operator in the original CoCoSo method which ignores the equal importance of the three subordinate compromise scores, and employ the operator of “Linear Sum Normalization” to normalize the three subordinate compromise scores so as to make the results reasonable. In addition, we introduce a maximum variance optimization model which can increase the discrimination degree of evaluation results and avoid inconsistent ordering. A numerical example of the trust evaluation of cloud service providers is given to demonstrate the applicability of the proposed method. Furthermore, we perform sensitivity analysis and comparative analysis to justify the accuracy of the decision outcomes derived by the proposed method. Besides, the results of discrimination test also indicate that the proposed method is more effective than the original CoCoSo method in identifying the subtle differences among alternatives.