• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų pranešimų santraukos / Conference and Meeting Abstracts
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų pranešimų santraukos / Conference and Meeting Abstracts
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Receptive field in neural network keyword spotting models

Thumbnail
Date
2019
Author
Kolesau, Aliaksei
Metadata
Show full item record
Abstract
Many keyword spotting models use neural networks to detect acoustic events such as phonemes, word pieces or whole words. The model is inferenced on every frame (segmented piece of audio) which is typically every 10ms. In order to improve the quality of classification neural network uses audio features for both the frame under classification and several adjacent frames. This introduces a tradeoff. Too large receptive field might cause overfitting, increases the number of parameters and latency. Too small receptive field might not be able to provide enough information to correctly classify audio event. We investigate several policies of constructing receptive field for neural network in keyword spotting including the ways to make receptive field more sparse such as frame skipping and frame stacking.
Issue date (year)
2019
URI
https://etalpykla.vilniustech.lt/handle/123456789/151025
Collections
  • Konferencijų pranešimų santraukos / Conference and Meeting Abstracts [3431]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister