• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid tactile sensor-based obstacle overcoming method for hexapod walking robots

Thumbnail
Date
2021
Author
Luneckas, Mindaugas
Luneckas, Tomas
Udris, Dainius
Plonis, Darius
Maskeliūnas, Rytis
Damaševičius, Robertas
Metadata
Show full item record
Abstract
Walking robots are considered as a promising solution for locomotion across irregular or rough terrain. While wheeled or tracked robots require flat surface like roads or driveways, walking robots can adapt to almost any terrain type. However, overcoming diverse terrain obstacles still remains a challenging task even for multi-legged robots with a high number of degrees of freedom. Here, we present a novel method for obstacle overcoming for walking robots based on the use of tactile sensors and generative recurrent neural network for positional error prediction. By using tactile sensors positioned on the front side of the legs, we demonstrate that a robot is able to successfully overcome obstacles close to robots height in the terrains of different complexity. The proposed method can be used by any type of a legged machine and can be considered as a step toward more advanced walking robot locomotion in unstructured terrain and uncertain environment.
Issue date (year)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/151063
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister