• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Use of multiple criteria decision aid methods in case of large amounts of data

Thumbnail
Date
2015
Author
Podviezko, Askoldas
Metadata
Show full item record
Abstract
Cases of large amounts of data and high numbers of criteria for evaluation of socio-economic objects are rather frequent. Evaluation can comprise thousands of entries of da ta and dozens of different criteria. Quantitative methods of processing large amounts of data could be classified into two broad categories: statistical methods and multiple criteria decision aid (MCDA) methods. Statistical methods impose a number of rather strong limitations on data. In contrast, multiple criteria evaluation methods can deal with ill-defined problems and with multi-dimensional data. Results yielded by statistical methods can be comprised by specialists, while results yielded by the MCDA methods are specifically desi gned for decision-makers. The MCDA methods provide results in the form of ranking of alternatives by their preference to decision-makers of various backgrounds. Even if is a convenient way, it is not well-informativ e. In the paper, various techniques of choosing the most important criteria, of building a hierarchy of criteria, of retrieval of results of evaluation broadening usage of multiple criteria methods are proposed, making emphasis on cases with large amounts of data.
Issue date (year)
2015
URI
https://etalpykla.vilniustech.lt/handle/123456789/151113
Collections
  • Straipsniai kituose recenzuojamuose leidiniuose / Articles in other peer-reviewed sources [8559]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister