dc.contributor.author | Sledevič, Tomyslav | |
dc.contributor.author | Navakauskas, Dalius | |
dc.date.accessioned | 2023-09-18T20:35:23Z | |
dc.date.available | 2023-09-18T20:35:23Z | |
dc.date.issued | 2014 | |
dc.identifier.other | (BIS)VGT02-000029910 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151137 | |
dc.description.abstract | FPGA implementation of a lattice-ladder multilayer perceptron structure together with its training algorithm in a full scale seems attractive, however there is a lack of preliminary results on the choice of implementation architecture. The aim of this investigation was to get insights on the selected neuron model fixed-point architecture (necessary to use word length) and its complexity (required number of LUT and DSP slices and BRAM size) by the evaluation of the reproduced by lattice-ladder neuron accuracy of bandwidth and central frequency as also as output signal normalized mean error. Thus the second order fixed-point normalized lattice-ladder neuron with its training algorithm was implemented in Artix-7 FPGA. The experiments were performed using various bandwidths and word length constrains. In general increase of word length yielded smaller mean errors. However the limited size BRAM used for trigonometric function LUTs was a bottleneck to improve the precision while doubling the number of DSP slices. | eng |
dc.format.extent | p. 1-4 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.source.uri | http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D7020327%26isnumber%3D7020310&denyReason=-133&arnumber=7020327&productsMatched=null&userType=inst | |
dc.subject | IK04 - Skaitmeninės signalų apdorojimo technologijos / Digital signal processing technologies | |
dc.title | The lattice-ladder neuron and its training circuit implementation in FPGA | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 11 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | Multilayer perceptron | |
dc.subject.en | Lattice-ladder filter | |
dc.subject.en | Gradient training | |
dc.subject.en | FPGA implementation | |
dc.subject.en | High level synthesis | |
dc.subject.en | Fixed-point arithmetics | |
dcterms.sourcetitle | 2014 IEEE 2nd Workshop on advances in information, electronic and electrical engineering (AIEEE), proceedings of the 2nd workshop November 28–29, 2014 Vilnius, Lithuania | |
dc.publisher.name | IEEE | |
dc.publisher.city | Washington | |
dc.identifier.doi | 000389270700014 | |
dc.identifier.elaba | 7852569 | |