Rodyti trumpą aprašą

dc.contributor.authorLuneckas, Tomas
dc.contributor.authorLuneckas, Mindaugas
dc.contributor.authorSalem, Ziad
dc.contributor.authorSzopek, Martina
dc.contributor.authorSchmickl, Thomas
dc.date.accessioned2023-09-18T20:37:07Z
dc.date.available2023-09-18T20:37:07Z
dc.date.issued2020
dc.identifier.other(SCOPUS_ID)85099705769
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151380
dc.description.abstractHoneybees (Apis mellifera L.) perform an important service to the ecosystem as they function as significant pollinators for plants. Over the past few decades, honeybees have suffered a progressive decline. The ability to observe and control the activity and density dynamics of honeybees in their hives in an automated way can allow to stimulate their actions and improve the overall efficiency of the hive. In this paper we present a novel honeybee observation method that is primarily based on honeybee density estimation using a convolutional neural network. First, specially designed stationary robots were positioned inside an arena designed for young honeybees. Three robots were used, each equipped with six infrared sensors for honeybee detection. The hardware and software setup that was used during the raw data collection process is described. Using the collected data from experiments with different numbers of honeybees we tested different convolutional neural networks to evaluate the relation between the network parameters and the estimation accuracy. To obtain better results, the numbers of honeybees were grouped into four different categories. It is shown that the most influential parameters are the number of epochs and the feature map size. By using the correct parameters it is possible to obtain 100 % accuracy during network training process and 86 % accuracy during evaluation process.eng
dc.formatPDF
dc.format.extentp. 2558-2566
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyConference Proceedings Citation Index - Science (Web of Science)
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099705769&origin=inward
dc.titleConvolutional neural network for honeybee density estimation
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references33
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionInstitute of Surface Technologies and Photonics Joanneum Research Forschungsgesellschaft MbH
dc.contributor.institutionUniversity of Graz
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.vgtuprioritizedfieldsMC0505 - Inovatyvios elektroninės sistemos / Innovative Electronic Systems
dc.subject.ltspecializationsL102 - Energetika ir tvari aplinka / Energy and a sustainable environment
dc.subject.enbio-hybrid society
dc.subject.enconvolutional neural network
dc.subject.endensity estimation
dc.subject.enhoneybee behavior
dc.subject.ensensor data analyses
dc.subject.enswarm observation
dcterms.sourcetitle2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020: 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020
dc.description.issueiss. 1
dc.description.volumevol. 49
dc.publisher.nameIEEE
dc.identifier.doi2-s2.0-85099705769
dc.identifier.doi85099705769
dc.identifier.doi0
dc.identifier.doi000682772902080
dc.identifier.doi10.1109/SSCI47803.2020.9308169
dc.identifier.elaba82905633


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą