dc.contributor.author | Luneckas, Tomas | |
dc.contributor.author | Luneckas, Mindaugas | |
dc.contributor.author | Salem, Ziad | |
dc.contributor.author | Szopek, Martina | |
dc.contributor.author | Schmickl, Thomas | |
dc.date.accessioned | 2023-09-18T20:37:07Z | |
dc.date.available | 2023-09-18T20:37:07Z | |
dc.date.issued | 2020 | |
dc.identifier.other | (SCOPUS_ID)85099705769 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/151380 | |
dc.description.abstract | Honeybees (Apis mellifera L.) perform an important service to the ecosystem as they function as significant pollinators for plants. Over the past few decades, honeybees have suffered a progressive decline. The ability to observe and control the activity and density dynamics of honeybees in their hives in an automated way can allow to stimulate their actions and improve the overall efficiency of the hive. In this paper we present a novel honeybee observation method that is primarily based on honeybee density estimation using a convolutional neural network. First, specially designed stationary robots were positioned inside an arena designed for young honeybees. Three robots were used, each equipped with six infrared sensors for honeybee detection. The hardware and software setup that was used during the raw data collection process is described. Using the collected data from experiments with different numbers of honeybees we tested different convolutional neural networks to evaluate the relation between the network parameters and the estimation accuracy. To obtain better results, the numbers of honeybees were grouped into four different categories. It is shown that the most influential parameters are the number of epochs and the feature map size. By using the correct parameters it is possible to obtain 100 % accuracy during network training process and 86 % accuracy during evaluation process. | eng |
dc.format | PDF | |
dc.format.extent | p. 2558-2566 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099705769&origin=inward | |
dc.title | Convolutional neural network for honeybee density estimation | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 33 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | Institute of Surface Technologies and Photonics Joanneum Research Forschungsgesellschaft MbH | |
dc.contributor.institution | University of Graz | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.vgtuprioritizedfields | MC0505 - Inovatyvios elektroninės sistemos / Innovative Electronic Systems | |
dc.subject.ltspecializations | L102 - Energetika ir tvari aplinka / Energy and a sustainable environment | |
dc.subject.en | bio-hybrid society | |
dc.subject.en | convolutional neural network | |
dc.subject.en | density estimation | |
dc.subject.en | honeybee behavior | |
dc.subject.en | sensor data analyses | |
dc.subject.en | swarm observation | |
dcterms.sourcetitle | 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020: 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 | |
dc.description.issue | iss. 1 | |
dc.description.volume | vol. 49 | |
dc.publisher.name | IEEE | |
dc.identifier.doi | 2-s2.0-85099705769 | |
dc.identifier.doi | 85099705769 | |
dc.identifier.doi | 0 | |
dc.identifier.doi | 000682772902080 | |
dc.identifier.doi | 10.1109/SSCI47803.2020.9308169 | |
dc.identifier.elaba | 82905633 | |