• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Baker’s yeast-based microbial fuel cell mediated by 2-methyl-1,4-naphthoquinone

Thumbnail
View/Open
membranes-11-00182-v2.pdf (3.129Mb)
Date
2021
Author
Rožėnė, Justė
Morkvėnaitė-Vilkončienė, Inga
Bružaitė, Ingrida
Zinovičius, Antanas
Ramanavičius, Arūnas
Metadata
Show full item record
Abstract
Microbial fuel cell (MFC) efficiency depends on charge transfer capability from microbe to anode, and the application of suitable redox mediators is important in this area. In this study, yeast viability experiments were performed to determine the 2-methyl-1,4-naphthoquinone (menadione (MD)) influence on different yeast cell species (baker’s yeast and Saccharomyces cerevisiae yeast cells). In addition, electrochemical measurements to investigate MFC performance and efficiency were carried out. This research revealed that baker’s yeast cells were more resistant to dissolved MD, but the current density decreased when yeast solution concentration was incrementally increased in the same cell. The maximal calculated power of a designed baker’s yeast-based MFC cell anode was 0.408 mW/m2 and this power output was registered at 24 mV. Simultaneously, the cell generated a 62-mV open circuit potential in the presence of 23 mM potassium ferricyanide and the absence of glucose and immobilized MD. The results only confirm that MD has strong potential to be applied to microbial fuel cells and that a two-redox-mediator-based system is suitable for application in microbial fuel cells.
Issue date (year)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/151968
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister