Show simple item record

dc.contributor.authorKurilov, Jevgenij
dc.date.accessioned2023-09-18T20:43:07Z
dc.date.available2023-09-18T20:43:07Z
dc.date.issued2021
dc.identifier.issn2213-8684
dc.identifier.other(SCOPUS_ID)85102625252
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/151979
dc.description.abstractThe paper aims to analyse the problem of personalisation and evaluation of quality of Augmented Reality (AR) learning systems. AR is often used in education to enhance students’ motivation by visualizing learning content and activities. In the paper, first of all, systematic review of relevant scientific literature on the research topics was conducted. The author’s AR learning systems quality personalisation and evaluation frameworks are presented in the paper. Evaluation of quality of AR learning systems should be based on applying both expert-centred (top-down) and user-centred (bottom-up) quality evaluation methods consisting of creating quality models (systems of criteria) and evaluation methods. AR-based learning systems including learning content (i.e. learning objects) and activities should be suitable, acceptable and usable for particular learners. Personalisation of AR learning systems should be based on learners’ models/profiles using students’ learning styles (bottom-up method), and educational data mining (top-down method). AR personalisation method is aimed to personalise learning by applying well-known learning styles models, educational data mining methods and techniques, and intelligent technologies, and thus to ensure that suitable AR-based learning systems should be selected for particular users to improve their learning motivation and thus—quality and efficiency. The method of identifying students preferring to actively use AR-based learning systems is based on identification of probabilistic suitability indexes to choose the most suitable AR-based learning systems for particular students. Experimental research is also performed, and its results are presented in the paper. The research is multidisciplinary, including computer science, education, operations research, and educational psychology areas.eng
dc.formatPDF
dc.format.extentp. 327-339
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.source.urihttps://doi.org/10.1007/978-3-030-62066-0_25
dc.titleOn top-down versus bottom-up personalisation and evaluation of augmented reality learning systems
dc.typeStraipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB
dcterms.references23
dc.type.pubtypeP1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enaugmented reality
dc.subject.enlearning personalisation
dc.subject.enlearner model
dc.subject.enevaluation of quality
dc.subject.eneducational data mining
dc.subject.enevaluation of suitability
dc.subject.enacceptance and use
dcterms.sourcetitleRIIFORUM 2020: International Research and Innovation Forum, 15-17 April 2020, Athens, Greece
dc.description.issueiss. 3
dc.description.volumevol. 32
dc.publisher.nameSpringer
dc.identifier.doi2-s2.0-85102625252
dc.identifier.doi85102625252
dc.identifier.doi0
dc.identifier.doi10.1007/978-3-030-62066-0_25
dc.identifier.elaba88667745


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record