• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of Artificial Neural Network and Particle Swarm Optimization for modelling and optimization of biosorption of Lead(II) and Nickel(II) from wastewater using dead cyanobacterial biomass

Thumbnail
Data
2021
Autorius
Sarkar, Biswajit
Sharma, Upasha
Adhikari, Kalyan
Lahiri, Sandip Kumar
Baltrėnaitė-Gedienė, Edita
Baltrėnas, Pranas
Dutta, Susmita
Metaduomenys
Rodyti detalų aprašą
Santrauka
Removal of heavy metals through biosorption using biomass offers several advantages over other conventional techniques such as low cost, high efficiency, environmentally friendly, etc. In the present article, biosorption of Nickel(II) and Lead(II)was investigated using dried biomass of cyanobacterial consortium. OFAT (one-factor-at-a-time) analysis was used to assess the effect of input parameters on the removal of potentially toxic elements by varying initial metal ion concentration (2–10 mgL−1), adsorbent dose (0.1–1.0 gL-1), pH (for Pb(II): 2–6, for Ni(II): 2–8) and temperature (25°C–45°C) individually, at constant shaking speed of 150 ​rpm. Results showed that removal using biomass attained highest values in as short time as 15 ​min. The investigations also showed the removal is highly effective at lower initial concentrations of heavy metals. Maximum removal of Lead(II) (87.27 ​± ​1.75%) and Nickel(II) (92.57 ​± ​0.77%) was obtained at pH 6 and 45°C and at pH 7 and 25°C, respectively, within 15 ​min with 0.1 gL-1 biomass. Both the Langmuir model and Freundlich model were seen to fit the equilibrium data. Further, Artificial Neural Network was used to model the biosorption process. Subsequently, Particle Swarm Optimization was applied to optimize the operating conditions for the removal of both the metals
Paskelbimo data (metai)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/152077
Kolekcijos
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis