Rodyti trumpą aprašą

dc.contributor.authorŽvirblis, Tadas
dc.contributor.authorPetkevičius, Linas
dc.contributor.authorVaitkus, Pranas
dc.contributor.authorŠabanovič, Eldar
dc.contributor.authorSkrickij, Viktor
dc.contributor.authorKilikevičius, Artūras
dc.date.accessioned2023-09-18T20:44:04Z
dc.date.available2023-09-18T20:44:04Z
dc.date.issued2021
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152169
dc.description.abstractA breakthrough of deep learning methods as automated feature extraction techniques for fault further evaluation and classification has blossomed in recent years. Multiple novel approaches of pattern recognition for fault diagnostic algorithms were proposed recently for vibration signal processing. In this paper, deep learning algorithms such as one- and two-dimensional convolutional neural networks (CNN-1D and CNN-2D), long short-term memory (LSTM) and Transformer were developed for hypoid gear faults multi-class and binary classification. The best model for seven gear conditions classification was the CNN-2D with 81.1% accuracy, while fault detection in binary classification achieved 100% accuracy. Also, LSTM and Transformer neural network showed extremely high accuracy result for binary classification. Gear condition without any faults was the most easily classifiable and showed the best statistics of model fit for all the models except for CNN-1D. The investigation revealed that experiments with lower torque achieved better classification accuracy, while different rotation speed had no significant effect. This study showed that superior accuracy results for hypoid gear fault classification were reached by using deep neural networks models and with vibration signal as input information.eng
dc.formatPDF
dc.format.extentp. [1-6]
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyIEEE Xplore
dc.relation.isreferencedbyScopus
dc.source.urihttps://ieeexplore.ieee.org/document/9435792
dc.titleInvestigation of deep neural networks for hypoid gear signal classification to identify anomalies
dc.typeStraipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB
dcterms.references0
dc.type.pubtypeP1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionVilniaus universitetas
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanics
dc.contributor.facultyTransporto inžinerijos fakultetas / Faculty of Transport Engineering
dc.contributor.departmentMechanikos mokslo institutas / Institute of Mechanical Science
dc.subject.researchfieldN 009 - Informatika / Computer science
dc.subject.researchfieldT 003 - Transporto inžinerija / Transport engineering
dc.subject.researchfieldT 009 - Mechanikos inžinerija / Mechanical enginering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enmachine learning
dc.subject.endeep neural networks
dc.subject.enconvolutional neural networks
dc.subject.enlong short-term memory
dc.subject.entransformer neural networks
dc.subject.enhypoid gear
dcterms.sourcetitle2020 IEEE 8th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 22-24 April 2021, Vilnius
dc.publisher.nameIEEE
dc.publisher.cityPiscataway, NJ
dc.identifier.doi10.1109/AIEEE51419.2021.9435792
dc.identifier.elaba94335252


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą