dc.contributor.author | Burmakova, Anastasiya | |
dc.contributor.author | Kalibatienė, Diana | |
dc.date.accessioned | 2023-09-18T20:45:15Z | |
dc.date.available | 2023-09-18T20:45:15Z | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 9781665449281 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/152344 | |
dc.description.abstract | Considering the randomness and complexity of oil spill accidents on the ground, the oil spill volume, the spilled oil density, the spreading coefficient of oil product on the surface layer and ground thickness, were taken as the initial influencing attributes for the prediction of oil contamination into the ground. Based on the study of the Adaptive Neural Fuzzy Inference System (ANFIS), a nonlinear fuzzy model to evaluate oil spill damage to the ground was established. Combined with the oil spill on the ground data obtained from the linear oil spill model and opinions of experts, the ANFIS-based prediction model for oil spill contamination to the ground has been proposed in this paper. Study results show that the proposed model is able to predict the oil spill contamination into the ground with reasonable accuracy. Its performance was assessed through the correlation coefficient (R), the coefficient of determination (R 2 ) and the root-mean-square error (RMSE). | eng |
dc.format | PDF | |
dc.format.extent | p. 1-6 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.relation.isreferencedby | Scopus | |
dc.rights | Neprieinamas | |
dc.source.uri | https://ieeexplore.ieee.org/abstract/document/9431405 | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:97640584/datastreams/ATTACHMENT_97746469/content | |
dc.source.uri | https://talpykla.elaba.lt/elaba-fedora/objects/elaba:97640584/datastreams/MAIN/content | |
dc.title | An ANFIS-based model to predict the oil spill consequences on the ground | |
dc.type | Straipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB | |
dcterms.references | 21 | |
dc.type.pubtype | P1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.studydirection | B04 - Informatikos inžinerija / Informatics engineering | |
dc.subject.vgtuprioritizedfields | IK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | fuzzy | |
dc.subject.en | ANFIS | |
dc.subject.en | oil spill | |
dc.subject.en | geological environment | |
dc.subject.en | prediction model | |
dcterms.sourcetitle | 2021 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), 22 April 2021, Vilnius, Lithuania / organized by: Vilnius Gediminas Technical University | |
dc.identifier.eissn | 2690-8506 | |
dc.publisher.name | IEEE | |
dc.publisher.city | Piscataway, NJ | |
dc.identifier.doi | 10.1109/eStream53087.2021.9431405 | |
dc.identifier.elaba | 97640584 | |