• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural network optimization algorithm based non-singular fast terminal sliding-mode control for an uncertain autonomous ground vehicle subjected to disturbances

View/Open
Neural network optimization algorithm based non-singular fast terminal sliding-mode control...2023.pdf (973.1Kb)
Date
2023
Author
Hajjami, Lhoussain El
Mellouli, El Mehdi
Žuraulis, Vidas
Berrada, Mohammed
Boumhidi, Ismail
Metadata
Show full item record
Abstract
As computer computing capabilities increase, optimization algorithms are becoming more useful for solving engineering problems. Up to now, several metaheuristic algorithms have been exploited in control engineering. However, this effort remains weak in addressing the autonomous ground vehicles (AGVs) trajectory tracking problem. This research presents a novel optimal approach merging the robust non-singular fast terminal sliding-mode control method (NFTSMC) and the neural network optimization algorithm (NNA) for automatic lane changing. First, a reference double lane-change path (DLC) is designed, and the robust non-singular fast terminal sliding-mode steering controller is developed, according to Lyapunov stability theory, to suppress the lateral deviation and ensure the yaw stability. Then, the control strategy is optimized by the NNA algorithm to adjust the steering controller optimally while avoiding local optimums. A comparison, under the same conditions, with the particle swarm optimization algorithm (PSO) revealed the superiority of the control law resulting from the NNA-based optimization. Furthermore, the proposed approach shows its excellent tracking performance versus the integrated backstepping sliding-mode controller (IBSMC) and the adaptive sliding-mode control (ASMC) under severe conditions typical of real-world lane changes.
Issue date (year)
2023
URI
https://etalpykla.vilniustech.lt/handle/123456789/152564
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister