• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Marketing strategies evaluation based on big data analysis: a CLUSTERING-MCDM approach

Thumbnail
Date
2019
Author
Mahdiraji, Hannan Amoozad
Zavadskas, Edmundas Kazimieras
Kazeminia, Aliakbar
Abbasi Kamardi, AliAsghar
Metadata
Show full item record
Abstract
Nowadays, a huge amount of data is generated due to rapid Information and Communication Technology development. In this paper, a digital banking strategy has been suggested applying these big data for Iranian banking industry. This strategy would guide Iranian banks to analyse and distinguish customers’ needs to offer services proportionate to their manner. In this research, the balances of more than 2,600,000 accounts over 400 weeks are computed in a bank. These accounts are clustered based on justified RFM parameters containing maximum balances, the most number of maximum balances and the last week number with the maximum balance using k-means method. Subsequently, the clusters are prioritised employing Best Worst Method- COmplex PRoportional ASsessment methods considering the diverse inner value of each cluster. The accounts are classified into six clusters. The experts named the clusters as special, loyal, silver- high interaction, silver- low interaction, bronze, averted- low interaction. silver- low interaction cluster and loyal cluster are picked in order by experts and BWM-COPRAS as the most influential clusters and the digital banking strategy is developed for them. RFM parameters are modelled for customers’ accounts singly. The aggregation of the separate accounts of a customer should be considered.
Issue date (year)
2019
URI
https://etalpykla.vilniustech.lt/handle/123456789/152723
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister