• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cost- and performance-aware resource selection for parallel software on heterogeneous cloud

Thumbnail
Data
2023
Autorius
Bystrov, Oleg
Pacevič, Ruslan
Kačeniauskas, Arnas
Metaduomenys
Rodyti detalų aprašą
Santrauka
Cloud providers offer flexible infrastructures and on‐demand services, including the capability to deploy low cost virtual resources of many different types. However, the diversity of cloud resources followed by the important trade‐off between cost and performance makes the resource selection a challenging task for users in the case of parallel communication‐intensive software. The paper presents cost‐ and performance‐aware resource selection for parallel discrete element method (DEM) software as a service (SaaS) on heterogeneous OpenStack cloud. The developed resource selection uses preliminary application‐specific benchmarks of size smaller than targeted problems and the performance prediction based on speedup of parallel computations to obtain Pareto optimal solutions and to select the best configuration of containers from user's perspective. Hybrid parallelization of DEM software is developed by using OpenCL for shared‐memory multi‐core architectures and MPI for internode communications on distributed‐memory computer clusters. Round up and proportional pricing schemes are examined and compared from a user's perspective. Lower cost of computations obtained by using the proportional pricing scheme is always preferable for users. However, the difference approaches 1.0% of the cost calculated by using proportional pricing scheme, when long lasting computations are performed. The prediction tends to underestimate the execution time of DEM SaaS, but its accuracy is sufficient to obtain the same Pareto optimal solutions by using measured and predicted execution times. Pareto front and linear scalarization propose to select configurations of containers capable of exploiting higher memory bandwidth, which is specific to memory bandwidth bound DEM computations.
Paskelbimo data (metai)
2023
URI
https://etalpykla.vilniustech.lt/handle/123456789/152951
Kolekcijos
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis