Rodyti trumpą aprašą

dc.contributor.authorSakalauskas, Leonidas
dc.contributor.authorDenisov, Vitalij
dc.contributor.authorDiržytė, Aistė
dc.date.accessioned2023-12-22T07:05:44Z
dc.date.available2023-12-22T07:05:44Z
dc.date.issued2023
dc.identifier.other(crossref_id)153536957
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153497
dc.description.abstractPrevious studies have demonstrated that the rates of anxiety have been constantly increasing worldwide in recent years. To understand this phenomenon, based on the complemented cognitive model TVAPA of anxiety, the hybrid method of modeling and simulating the dynamics of anxiety in the population is proposed. The suggested method combines agent-based modeling, dynamic systems modeling with differential equations, and machine learning methods. The four-level STAI methodology is applied to assess anxiety in the proposed models. Sentiment analysis of social media content is used to identify the parameters of triggering stimuli flow. The proposed models were implemented and verified using open access data sets. Created models are characterized by simplicity, and the parameters used in them have a clear socio-informational meaning. The developed models can be calibrated by applying statistical methods according to indicators of anxiety measured at discrete sets of time intervals by associating them with parameters of the threat stimuli flow taken from statistical data and/or Internet content tracking data.eng
dc.formatPDF
dc.format.extentp. 1-19
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScience Citation Index Expanded (Web of Science)
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyDOAJ
dc.relation.isreferencedbyRePec
dc.rightsLaisvai prieinamas internete
dc.source.urihttps://www.mdpi.com/2227-7390/11/19/4121
dc.source.urihttps://talpykla.elaba.lt/elaba-fedora/objects/elaba:178531761/datastreams/MAIN/content
dc.source.uri10.3390/math11194121
dc.titleHybrid modeling of anxiety propagation in response to threat stimuli flow
dc.typeStraipsnis Web of Science DB / Article in Web of Science DB
dcterms.accessRightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
dcterms.licenseCreative Commons – Attribution – 4.0 International
dcterms.references81
dc.type.pubtypeS1 - Straipsnis Web of Science DB / Web of Science DB article
dc.contributor.institutionKlaipėdos universitetas
dc.contributor.institutionVilniaus Gedimino technikos universitetas Mykolo Romerio universitetas
dc.contributor.facultyKūrybinių industrijų fakultetas / Faculty of Creative Industries
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.researchfieldS 006 - Psichologija / Psychology
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society
dc.subject.enanxiety level
dc.subject.eninformation processing model of anxiety
dc.subject.enthreat stimuli
dc.subject.enagent-based modeling
dc.subject.ensystem dynamics
dc.subject.encompartmental modeling
dcterms.sourcetitleMathematics: Special issue: Modeling and simulation of social-behavioral phenomena
dc.description.issueiss. 19
dc.description.volumevol. 11
dc.publisher.nameMDPI
dc.publisher.cityBasel
dc.identifier.doi153536957
dc.identifier.doi2-s2.0-85176435813
dc.identifier.doi10.3390/math11194121
dc.identifier.elaba178531761


Šio įrašo failai

Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą