Show simple item record

dc.contributor.authorKudelina, Karolina
dc.contributor.authorRaja, Hadi Ashraf
dc.contributor.authorVaimann, Toomas
dc.contributor.authorKallaste, Ants
dc.contributor.authorPomarnacki, Raimondas
dc.contributor.authorHyunh, Van Khang
dc.date.accessioned2023-12-22T07:06:26Z
dc.date.available2023-12-22T07:06:26Z
dc.date.issued2023
dc.identifier.other(crossref_id)152874664
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153689
dc.description.abstractBearings faults, one of the most common mechanical failures in the electrical machine, have been the diagnostic interest for a long time. The questions related to bearing currents have become an important issue due to a growing number of motors running with variable-speed drives. This paper introduces a bearing current problem presenting the leading causes and damages of induction machine bearing currents. As the world is moving towards Industry 4.0 standards and fault prediction in production is becoming an extremely crucial topic, this paper presents a pre-processing of training datasets and possibilities for predictive maintenance. The experimental results of fault implementation in a laboratory environment to collect training datasets are discussed.eng
dc.formatPDF
dc.format.extentp. 1-5
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyIEEE Xplore
dc.relation.isreferencedbyConference Proceedings Citation Index - Science (Web of Science)
dc.source.urihttps://ieeexplore.ieee.org/document/10238934
dc.titlePreliminary analysis of bearing current faults for predictive maintenance
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references16
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionTallinn University of Technology,
dc.contributor.institutionTallinn University of Technology
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionUniversity of Agder
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.studydirectionE08 - Elektros inžinerija / Electrical engineering
dc.subject.studydirectionE09 - Elektronikos inžinerija / Electronic engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enAC motors
dc.subject.enartificial intelligence
dc.subject.enball bearings
dc.subject.encondition monitoring
dc.subject.enfault detection
dc.subject.enmachine learning
dc.subject.enpredictive maintenance
dcterms.sourcetitle2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023, 15-18 May 2023, San Francisco, CA, USA
dc.publisher.nameIEEE
dc.identifier.doi152874664
dc.identifier.doi2-s2.0-85172738770
dc.identifier.doi85172738770
dc.identifier.doi0
dc.identifier.doi001066025700091
dc.identifier.doi10.1109/IEMDC55163.2023.10238934
dc.identifier.elaba178987559


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record