dc.contributor.author | Kudelina, Karolina | |
dc.contributor.author | Raja, Hadi Ashraf | |
dc.contributor.author | Vaimann, Toomas | |
dc.contributor.author | Kallaste, Ants | |
dc.contributor.author | Pomarnacki, Raimondas | |
dc.contributor.author | Hyunh, Van Khang | |
dc.date.accessioned | 2023-12-22T07:06:26Z | |
dc.date.available | 2023-12-22T07:06:26Z | |
dc.date.issued | 2023 | |
dc.identifier.other | (crossref_id)152874664 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/xmlui/handle/123456789/153689 | |
dc.description.abstract | Bearings faults, one of the most common mechanical failures in the electrical machine, have been the diagnostic interest for a long time. The questions related to bearing currents have become an important issue due to a growing number of motors running with variable-speed drives. This paper introduces a bearing current problem presenting the leading causes and damages of induction machine bearing currents. As the world is moving towards Industry 4.0 standards and fault prediction in production is becoming an extremely crucial topic, this paper presents a pre-processing of training datasets and possibilities for predictive maintenance. The experimental results of fault implementation in a laboratory environment to collect training datasets are discussed. | eng |
dc.format | PDF | |
dc.format.extent | p. 1-5 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Science (Web of Science) | |
dc.source.uri | https://ieeexplore.ieee.org/document/10238934 | |
dc.title | Preliminary analysis of bearing current faults for predictive maintenance | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 16 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Tallinn University of Technology, | |
dc.contributor.institution | Tallinn University of Technology | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | University of Agder | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.studydirection | E08 - Elektros inžinerija / Electrical engineering | |
dc.subject.studydirection | E09 - Elektronikos inžinerija / Electronic engineering | |
dc.subject.vgtuprioritizedfields | IK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | AC motors | |
dc.subject.en | artificial intelligence | |
dc.subject.en | ball bearings | |
dc.subject.en | condition monitoring | |
dc.subject.en | fault detection | |
dc.subject.en | machine learning | |
dc.subject.en | predictive maintenance | |
dcterms.sourcetitle | 2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023, 15-18 May 2023, San Francisco, CA, USA | |
dc.publisher.name | IEEE | |
dc.identifier.doi | 152874664 | |
dc.identifier.doi | 2-s2.0-85172738770 | |
dc.identifier.doi | 85172738770 | |
dc.identifier.doi | 0 | |
dc.identifier.doi | 001066025700091 | |
dc.identifier.doi | 10.1109/IEMDC55163.2023.10238934 | |
dc.identifier.elaba | 178987559 | |