Show simple item record

dc.contributor.authorKudelina, Karolina
dc.contributor.authorRaja, Hadi Ashraf
dc.contributor.authorAutsou, Siarhei
dc.contributor.authorNaseer, Muhammad Usman
dc.contributor.authorVaimann, Toomas
dc.contributor.authorKallaste, Ants
dc.contributor.authorPomarnacki, Raimondas
dc.contributor.authorHyunh, Van Khang
dc.date.accessioned2023-12-22T07:06:39Z
dc.date.available2023-12-22T07:06:39Z
dc.date.issued2023
dc.identifier.other(crossref_id)153803307
dc.identifier.urihttps://etalpykla.vilniustech.lt/xmlui/handle/123456789/153754
dc.description.abstractNowadays, electrical machines are used in numerous applications, where unexpected faults are to be prevented. Sophisticated technologies are demanded to be able to manage big data of machines conditions and store these datasets remotely using cloud computation. This data is necessary for algorithms to be trained and predict further failures. This paper presents a study of bearing faults for predictive maintenance. The data collection in lab environment and its preliminary analysis is introduced. The impact of different control modes and loads on global parameters of rotating machines is discussed. The fault classification and prediction techniques are presented.eng
dc.formatPDF
dc.format.extentp. 430-435
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyIEEE Xplore
dc.source.urihttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10271451
dc.titlePreliminary analysis of mechanical bearing faults for predictive maintenance of electrical machines
dc.typeStraipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB
dcterms.references16
dc.type.pubtypeP1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB
dc.contributor.institutionTallinn University of Technology
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.institutionUniversity of Agder
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.studydirectionE09 - Elektronikos inžinerija / Electronic engineering
dc.subject.studydirectionE08 - Elektros inžinerija / Electrical engineering
dc.subject.studydirectionB04 - Informatikos inžinerija / Informatics engineering
dc.subject.vgtuprioritizedfieldsIK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enartificial intelligence
dc.subject.enbearings
dc.subject.encondition monitoring
dc.subject.enelectric motors
dc.subject.enfault detection
dc.subject.enFourier transforms
dc.subject.enpredictive maintenance
dc.subject.enrotating machines
dcterms.sourcetitleProceedings of the 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2023, 09 October 2023, Chania, Greece
dc.description.issueiss. 7
dc.description.volumevol. 65
dc.publisher.nameIEEE
dc.identifier.doi153803307
dc.identifier.doi2-s2.0-85175262312
dc.identifier.doi85175262312
dc.identifier.doi0
dc.identifier.doi10.1109/SDEMPED54949.2023.10271451
dc.identifier.elaba181311623


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record