dc.contributor.author | Kudelina, Karolina | |
dc.contributor.author | Raja, Hadi Ashraf | |
dc.contributor.author | Autsou, Siarhei | |
dc.contributor.author | Naseer, Muhammad Usman | |
dc.contributor.author | Vaimann, Toomas | |
dc.contributor.author | Kallaste, Ants | |
dc.contributor.author | Pomarnacki, Raimondas | |
dc.contributor.author | Hyunh, Van Khang | |
dc.date.accessioned | 2023-12-22T07:06:39Z | |
dc.date.available | 2023-12-22T07:06:39Z | |
dc.date.issued | 2023 | |
dc.identifier.other | (crossref_id)153803307 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/xmlui/handle/123456789/153754 | |
dc.description.abstract | Nowadays, electrical machines are used in numerous applications, where unexpected faults are to be prevented. Sophisticated technologies are demanded to be able to manage big data of machines conditions and store these datasets remotely using cloud computation. This data is necessary for algorithms to be trained and predict further failures. This paper presents a study of bearing faults for predictive maintenance. The data collection in lab environment and its preliminary analysis is introduced. The impact of different control modes and loads on global parameters of rotating machines is discussed. The fault classification and prediction techniques are presented. | eng |
dc.format | PDF | |
dc.format.extent | p. 430-435 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Scopus | |
dc.relation.isreferencedby | IEEE Xplore | |
dc.source.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10271451 | |
dc.title | Preliminary analysis of mechanical bearing faults for predictive maintenance of electrical machines | |
dc.type | Straipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB | |
dcterms.references | 16 | |
dc.type.pubtype | P1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB | |
dc.contributor.institution | Tallinn University of Technology | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.institution | University of Agder | |
dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | |
dc.subject.researchfield | T 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering | |
dc.subject.studydirection | E09 - Elektronikos inžinerija / Electronic engineering | |
dc.subject.studydirection | E08 - Elektros inžinerija / Electrical engineering | |
dc.subject.studydirection | B04 - Informatikos inžinerija / Informatics engineering | |
dc.subject.vgtuprioritizedfields | IK0303 - Dirbtinio intelekto ir sprendimų priėmimo sistemos / Artificial intelligence and decision support systems | |
dc.subject.ltspecializations | L106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies | |
dc.subject.en | artificial intelligence | |
dc.subject.en | bearings | |
dc.subject.en | condition monitoring | |
dc.subject.en | electric motors | |
dc.subject.en | fault detection | |
dc.subject.en | Fourier transforms | |
dc.subject.en | predictive maintenance | |
dc.subject.en | rotating machines | |
dcterms.sourcetitle | Proceedings of the 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2023, 09 October 2023, Chania, Greece | |
dc.description.issue | iss. 7 | |
dc.description.volume | vol. 65 | |
dc.publisher.name | IEEE | |
dc.identifier.doi | 153803307 | |
dc.identifier.doi | 2-s2.0-85175262312 | |
dc.identifier.doi | 85175262312 | |
dc.identifier.doi | 0 | |
dc.identifier.doi | 10.1109/SDEMPED54949.2023.10271451 | |
dc.identifier.elaba | 181311623 | |