• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Malware detection using convolutional neural network, a deep learning framework: comparative analysis

Thumbnail
View/Open
I4.007.pdf (722.8Kb)
Date
2022
Author
Gyamfi, Nana Kwame
Goranin, Nikolaj
Čeponis, Dainius
Čenys, Antanas
Metadata
Show full item record
Abstract
Malware detection is a quintessential task for every security for securing work stations, mobile devices, servers etc. This detection is mainly used for identifying malware that are causing malicious problems. The traditional detection system has a much lesser rate of detection rate and the chances of getting an error is higher as well. As the emerging technology revolutionized day by day, the usage of Deep Learning (DL) is highly influenced in these detection fields. So, this paper brings an effective DL based detection of malware in which the following are the stages: a) Data collection being carried from Malimg dataset, b) Pre-processing carried out to eliminate the unwanted noise from the dataset and passed to c) Feature extraction, where Principal Component Analysis (PCA) used for extracting required features, d) Feature selection where Particle Swarm Optimization (PSO) used for dimensionality reduction and finally passed for e) Classification where Convolutional Neural Network (CNN) used as a classifier for effective classification. These models are evaluated under measures like Accuracy, sensitivity, specificity, precision, recall, f1-score, TPR, FPR and detection rate over models like VGG16, VGG19, Densenet, Alexnent, Ensemble learning. The proposed system (D-WARE) gives much higher performance with a 96% accuracy
Issue date (year)
2022
URI
https://etalpykla.vilniustech.lt/handle/123456789/114288
Collections
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister