• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Malware detection using convolutional neural network, a deep learning framework: comparative analysis

Thumbnail
Peržiūrėti/Atidaryti
I4.007.pdf (722.8Kb)
Data
2022
Autorius
Gyamfi, Nana Kwame
Goranin, Nikolaj
Čeponis, Dainius
Čenys, Antanas
Metaduomenys
Rodyti detalų aprašą
Santrauka
Malware detection is a quintessential task for every security for securing work stations, mobile devices, servers etc. This detection is mainly used for identifying malware that are causing malicious problems. The traditional detection system has a much lesser rate of detection rate and the chances of getting an error is higher as well. As the emerging technology revolutionized day by day, the usage of Deep Learning (DL) is highly influenced in these detection fields. So, this paper brings an effective DL based detection of malware in which the following are the stages: a) Data collection being carried from Malimg dataset, b) Pre-processing carried out to eliminate the unwanted noise from the dataset and passed to c) Feature extraction, where Principal Component Analysis (PCA) used for extracting required features, d) Feature selection where Particle Swarm Optimization (PSO) used for dimensionality reduction and finally passed for e) Classification where Convolutional Neural Network (CNN) used as a classifier for effective classification. These models are evaluated under measures like Accuracy, sensitivity, specificity, precision, recall, f1-score, TPR, FPR and detection rate over models like VGG16, VGG19, Densenet, Alexnent, Ensemble learning. The proposed system (D-WARE) gives much higher performance with a 96% accuracy
Paskelbimo data (metai)
2022
URI
https://etalpykla.vilniustech.lt/handle/123456789/114288
Kolekcijos
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis