• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On personalised multi-agent learning system: artificial neural network agent

Thumbnail
Date
2017
Author
Meleško, Jaroslav
Kurilov, Jevgenij
Metadata
Show full item record
Abstract
The paper aims to present artificial neural network (ANN) software agent necessary to create a personalised adaptive multi-agent learning system. First of all, the authors performed systematic literature review on application of ANN and intelligent program agents to personalise learning in Clarivate Analytics (formerly Thomson Reuters) Web of Science database. The systematic literature review sought to answer the following research question: “How ANN are applied in learning environments to provide and support personalised learning?” After that, methodology of ANN application in a personalised multi-agent learning system is presented. The personalisation in the learning system is based on Felder and Silverman Learning Styles Model. This model requires the use of questionnaire to determine student’s learning style. Some students may answer the questionnaire dishonestly or irresponsibly, or make a mistake in self-diagnosis, which results in the creation of an incorrect student’s model. This causes a system to provide suboptimal learning scenarios to the student. The authors present a model of ANN agent to be used in intelligent multi-agent learning system. The proposed software agent uses ANN to associate Felder and Silverman learning styles of students with their behaviour within the learning environment. After training, the agent will identify potentially faulty student models by looking for anomalous behaviour for that learning style. Such situations can be resolved by providing alternative learning scenarios to the students and observing their choices, and by asking the student to complete the questionnaire again.
Issue date (year)
2017
URI
https://etalpykla.vilniustech.lt/handle/123456789/119178
Collections
  • Konferencijų straipsniai / Conference Articles [15192]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister