• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying dedicated psychological questionnaires VS educational data mining to identify students learning styles

Thumbnail
Data
2019
Autorius
Kurilov, Jevgenij
Metaduomenys
Rodyti detalų aprašą
Santrauka
The paper aims to analyse application of dedicated psychological questionnaires and educational data mining (EDM) to identify students’ learning styles and thus to create conditions to personalise learning. Dedicated psychological questionnaires could help us to establish individual probabilistic suitability indexes for each analysed student and each learning activity in e.g. Virtual Learning Environment (VLE) to identify which learning activities are the most suitable for particular student. Students’ learning styles-based probabilistic suitability index shows the level of suitability of given learning content, activity or environment to particular student. The higher is probabilistic suitability index the better learning activity fits particular student’s needs. Using appropriate EDM methods and techniques, we could analyse what particular learning activities (and appropriate VLE tools) were practically used by these students earlier, and to what extent. After that, the data on practical use of VLE-based learning activities or tools should be compared with students’ probabilistic suitability indexes. In the case of any noticeable discrepancies, students’ profiles and accompanied probabilistic suitability indexes should be identified more precisely, and students’ personal leaning paths in VLE should be corrected according to new identified data. Thus, using EDM, we could noticeably enhance students’ learning quality and effectiveness. In the paper, first of all, related research review is provided. Second, methodology to personalise learning using both dedicated psychological questionnaires and educational data mining methods and techniques to identify students’ learning styles is presented. Third, some real-life examples of applying both methods using Felder-Silverman Learning Styles Model are presented. The paper is concluded by the statement that the best way to exactly identify students’ learning styles is consistent application of both dedicated psychological questionnaires and educational data mining.
Paskelbimo data (metai)
2019
URI
https://etalpykla.vilniustech.lt/handle/123456789/125915
Kolekcijos
  • Konferencijų straipsniai / Conference Articles [15192]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis