• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of exchange market prediction model based on high-low daily data

Thumbnail
Date
2014
Author
Stankevičienė, Jelena
Maknickienė, Nijolė
Maknickas, Algirdas
Metadata
Show full item record
Abstract
The model of Evolino recurrent neural networks (RNN) based on ensemble for prediction of daily extremes of financial market is investigated. The prediction distributions of each high and lows of daily values of exchange rates were obtained. Obtained distributions show an accuracy of predictions, reflects true features of direct time interval unpredictability of chaotic process. Changing of time series data from close to extremes allows to create new strategy of investment built on distributions basic parameters: standard deviation, skewness, kurtosis. Extension of close distribution to the pair of high-low distribution is opening extra capabilities of optimal portfolio creation and risk management for investors.
Issue date (year)
2014
URI
https://etalpykla.vilniustech.lt/handle/123456789/146640
Collections
  • Konferencijų straipsniai / Conference Articles [15192]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister