dc.contributor.author | Stankevičienė, Jelena | |
dc.contributor.author | Maknickienė, Nijolė | |
dc.contributor.author | Maknickas, Algirdas | |
dc.date.accessioned | 2023-09-18T20:05:07Z | |
dc.date.available | 2023-09-18T20:05:07Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2029-4441 | |
dc.identifier.other | (BIS)VGT02-000028460 | |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/146640 | |
dc.description.abstract | The model of Evolino recurrent neural networks (RNN) based on ensemble for prediction of daily extremes of financial market is investigated. The prediction distributions of each high and lows of daily values of exchange rates were obtained. Obtained distributions show an accuracy of predictions, reflects true features of direct time interval unpredictability of chaotic process. Changing of time series data from close to extremes allows to create new strategy of investment built on distributions basic parameters: standard deviation, skewness, kurtosis. Extension of close distribution to the pair of high-low distribution is opening extra capabilities of optimal portfolio creation and risk management for investors. | eng |
dc.format | PDF | |
dc.format.extent | p. 320-327 | |
dc.format.medium | tekstas / txt | |
dc.language.iso | eng | |
dc.relation.isreferencedby | Conference Proceedings Citation Index - Social Science & Humanities (Web of Science) | |
dc.source.uri | http://dx.doi.org/10.3846/bm.2014.040 | |
dc.subject | VE05 - Socioekonominių sistemų universalaus tvarumo tyrimai / Universal sustainability research | |
dc.title | Investigation of exchange market prediction model based on high-low daily data | |
dc.type | Straipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB | |
dcterms.references | 34 | |
dc.type.pubtype | P1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB | |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | |
dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | |
dc.contributor.faculty | Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences | |
dc.contributor.department | Finansų inžinerijos katedra / Department of Financial Engineering | |
dc.subject.researchfield | S 003 - Vadyba / Management | |
dc.subject.researchfield | S 004 - Ekonomika / Economics | |
dc.subject.researchfield | T 007 - Informatikos inžinerija / Informatics engineering | |
dc.subject.ltspecializations | L103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society | |
dc.subject.en | Artificial intelligence | |
dc.subject.en | Ensemble | |
dc.subject.en | Evolino RNN | |
dc.subject.en | Exchange market | |
dc.subject.en | Forecasting | |
dc.subject.en | Prediction | |
dc.subject.en | Distribution | |
dcterms.sourcetitle | The 8th international scientific conference "Business and Management 2014", May 15-16, 2014, Vilnius, Lithuania : selected papers | |
dc.publisher.name | Technika | |
dc.publisher.city | Vilnius | |
dc.identifier.doi | 000353708700039 | |
dc.identifier.doi | 10.3846/bm.2014.040 | |
dc.identifier.elaba | 4076212 | |