Rodyti trumpą aprašą

dc.contributor.authorStankevičienė, Jelena
dc.contributor.authorMaknickienė, Nijolė
dc.contributor.authorMaknickas, Algirdas
dc.date.accessioned2023-09-18T20:05:07Z
dc.date.available2023-09-18T20:05:07Z
dc.date.issued2014
dc.identifier.issn2029-4441
dc.identifier.other(BIS)VGT02-000028460
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/146640
dc.description.abstractThe model of Evolino recurrent neural networks (RNN) based on ensemble for prediction of daily extremes of financial market is investigated. The prediction distributions of each high and lows of daily values of exchange rates were obtained. Obtained distributions show an accuracy of predictions, reflects true features of direct time interval unpredictability of chaotic process. Changing of time series data from close to extremes allows to create new strategy of investment built on distributions basic parameters: standard deviation, skewness, kurtosis. Extension of close distribution to the pair of high-low distribution is opening extra capabilities of optimal portfolio creation and risk management for investors.eng
dc.formatPDF
dc.format.extentp. 320-327
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyConference Proceedings Citation Index - Social Science & Humanities (Web of Science)
dc.source.urihttp://dx.doi.org/10.3846/bm.2014.040
dc.subjectVE05 - Socioekonominių sistemų universalaus tvarumo tyrimai / Universal sustainability research
dc.titleInvestigation of exchange market prediction model based on high-low daily data
dc.typeStraipsnis konferencijos darbų leidinyje Web of Science DB / Paper in conference publication in Web of Science DB
dcterms.references34
dc.type.pubtypeP1a - Straipsnis konferencijos darbų leidinyje Web of Science DB / Article in conference proceedings Web of Science DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Management
dc.contributor.facultyFundamentinių mokslų fakultetas / Faculty of Fundamental Sciences
dc.contributor.departmentFinansų inžinerijos katedra / Department of Financial Engineering
dc.subject.researchfieldS 003 - Vadyba / Management
dc.subject.researchfieldS 004 - Ekonomika / Economics
dc.subject.researchfieldT 007 - Informatikos inžinerija / Informatics engineering
dc.subject.ltspecializationsL103 - Įtrauki ir kūrybinga visuomenė / Inclusive and creative society
dc.subject.enArtificial intelligence
dc.subject.enEnsemble
dc.subject.enEvolino RNN
dc.subject.enExchange market
dc.subject.enForecasting
dc.subject.enPrediction
dc.subject.enDistribution
dcterms.sourcetitleThe 8th international scientific conference "Business and Management 2014", May 15-16, 2014, Vilnius, Lithuania : selected papers
dc.publisher.nameTechnika
dc.publisher.cityVilnius
dc.identifier.doi000353708700039
dc.identifier.doi10.3846/bm.2014.040
dc.identifier.elaba4076212


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą