• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Different methods to identify students preferences to learning styles and learning paths

Thumbnail
Data
2019
Autorius
Kurilov, Jevgenij
Metaduomenys
Rodyti detalų aprašą
Santrauka
The aim of the paper is to analyse methods of identification of students’ personal preferences to learning styles and optimal learning paths. Students’ personal preferences have to be taken into account while creating optimal learning paths in order to achieve higher students’ motivation. Different dedicated psychological questionnaires for different learning styles models are presented in the paper. Several educational data mining (EDM) / learning analytics methods to identify and check students’ learning styles are discussed too. Additionally, exemplar models (neighbour method and case-based reasoning (CBR)) and Bayes networks (BN) are presented and discussed in more detail. It is known that individuals use rules when the new items are confusable and use exemplars when they are distinct. Initially, categorisation is based on rules. During the learning process, appropriate features for discriminating items is learned over time. Then, new items can be stored as exemplars and used to categorise less important items without discrepancies between rules. Exemplar models explain real life events that are problematic for modelling that uses sets of rules. New exemplar of the event is classified according to its similarity to the exemplars already stored. Best known among examples of exemplar-based modelling are nearest neighbour method and CBR. CBR method uses old experiences and adapts them for finding a solution to new problems. In the paper, systematic review of literature on modelling approaches combining CBR and BN is presented trying to identify current status of the development of the framework for Bayesian case-based reasoning. Literature review focuses on exemplar-based approaches, exploring possibilities of combining BN and CBR and seeking for niches for improvement of the overall BN-CBR approach. In the paper, comparative analysis of existing CBR-BN models is also done. Attention is paid to feedback issues. Finally, after discussion and weighting the pros and cons of application of combined BN-CBR approach as well as EDM methods for student’s learning style diagnosis and check, conclusions are made and future research trends are presented.
Paskelbimo data (metai)
2019
URI
https://etalpykla.vilniustech.lt/handle/123456789/148327
Kolekcijos
  • Konferencijų straipsniai / Conference Articles [15192]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis