• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Moksliniai ir apžvalginiai straipsniai / Research and Review Articles
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Session-based news recommendations using SimRank on multi-modal graphs

Thumbnail
Data
2021
Autorius
Symeonidis, Panagiotis
Kirjackaja, Lidija
Zanker, Markus
Metaduomenys
Rodyti detalų aprašą
Santrauka
Recommender systems are among the most widespread applications of artificial intelligence techniques. For instance, news recommender systems serve users in managing the overload of information they come across when accessing news portals. Obviously, in the news domain time-awareness of recommendation approaches are crucial. However, most of these approaches missed to consider user sessions, which group the items that a user interacted with. In this paper, we study the problem of session-based recommendations by running SimRank on time-evolving heterogeneous graphs. In particular, we construct a dynamic heterogeneous multi-partite graph and adjust SimRank to run on it by using different (i) sliding time window sizes, (ii) sub-graphs used for model learning and (iii) sequential article weighting strategies. We evaluate our algorithms on two real-life datasets, and we show that our method outperforms other state-of-the-art methods in terms of accuracy and diversity. The significance and impact of this work is important because it introduces to the research community of expert and intelligent systems, for the first time, a stream-based version of SimRank algorithm, which is able to run over time-evolving graphs.
Paskelbimo data (metai)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/152163
Kolekcijos
  • Straipsniai Web of Science ir/ar Scopus referuojamuose leidiniuose / Articles in Web of Science and/or Scopus indexed sources [7946]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis