• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • View Item
  •   DSpace Home
  • Mokslinės publikacijos (PDB) / Scientific publications (PDB)
  • Konferencijų publikacijos / Conference Publications
  • Konferencijų straipsniai / Conference Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of parameters of semiconductor band-pass filters using artificial neural network

Thumbnail
Date
2021
Author
Rusen, Vaiva
Krukonis, Audrius
Plonis, Darius
Metadata
Show full item record
Abstract
Microwave device design process requires repetitive and time-consuming electromagnetic simulations to extract device parameters. New methods are needed to accelerate the process and enable it for real time parameter calculations. Feed-forward backpropagation multilayer perceptron artificial neural network with 3 hidden layers is presented to predict S21 parameters of 3.5 GHz band-pass filter. Prediction results, received with neural network trained with Resilient Backpropagation, One Step Secant, Scaled Conjugate Gradient and BFGS Quasi-Newton training methods, are compared with each other. The best prediction results are received after training network with BFGS Quasi-Newton training method. Average mean squared error and root mean square error received is 0.0044 and 0.066 respectively. As predictions of neural network are noticeably faster than electromagnetic simulation and prediction errors are low, the method can be used to predict band-pass filter parameters in real time.
Issue date (year)
2021
URI
https://etalpykla.vilniustech.lt/handle/123456789/152165
Collections
  • Konferencijų straipsniai / Conference Articles [15192]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister