Rodyti trumpą aprašą

dc.contributor.authorRusen, Vaiva
dc.contributor.authorKrukonis, Audrius
dc.contributor.authorPlonis, Darius
dc.date.accessioned2023-09-18T20:44:02Z
dc.date.available2023-09-18T20:44:02Z
dc.date.issued2021
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/152165
dc.description.abstractMicrowave device design process requires repetitive and time-consuming electromagnetic simulations to extract device parameters. New methods are needed to accelerate the process and enable it for real time parameter calculations. Feed-forward backpropagation multilayer perceptron artificial neural network with 3 hidden layers is presented to predict S21 parameters of 3.5 GHz band-pass filter. Prediction results, received with neural network trained with Resilient Backpropagation, One Step Secant, Scaled Conjugate Gradient and BFGS Quasi-Newton training methods, are compared with each other. The best prediction results are received after training network with BFGS Quasi-Newton training method. Average mean squared error and root mean square error received is 0.0044 and 0.066 respectively. As predictions of neural network are noticeably faster than electromagnetic simulation and prediction errors are low, the method can be used to predict band-pass filter parameters in real time.eng
dc.formatPDF
dc.format.extentp. 1-4
dc.format.mediumtekstas / txt
dc.language.isoeng
dc.relation.isreferencedbyIEEE Xplore
dc.relation.isreferencedbyScopus
dc.source.urihttps://ieeexplore.ieee.org/document/9435748
dc.titlePrediction of parameters of semiconductor band-pass filters using artificial neural network
dc.typeStraipsnis konferencijos darbų leidinyje Scopus DB / Paper in conference publication in Scopus DB
dcterms.references10
dc.type.pubtypeP1b - Straipsnis konferencijos darbų leidinyje Scopus DB / Article in conference proceedings Scopus DB
dc.contributor.institutionVilniaus Gedimino technikos universitetas
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronics
dc.subject.researchfieldT 001 - Elektros ir elektronikos inžinerija / Electrical and electronic engineering
dc.subject.vgtuprioritizedfieldsMC0505 - Inovatyvios elektroninės sistemos / Innovative Electronic Systems
dc.subject.ltspecializationsL106 - Transportas, logistika ir informacinės ir ryšių technologijos (IRT) / Transport, logistic and information and communication technologies
dc.subject.enband-pass filter
dc.subject.enartificial neural network
dc.subject.enfeedforward backpropagation network
dc.subject.enmicrowave devices
dcterms.sourcetitle2020 IEEE 8th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 22-24 April 2021, Vilnius
dc.publisher.nameIEEE
dc.publisher.cityPiscataway, NJ
dc.identifier.doi10.1109/AIEEE51419.2021.9435748
dc.identifier.elaba94578768


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą