dc.rights.license | Kūrybinių bendrijų licencija / Creative Commons licence | en_US |
dc.contributor.author | Levon, Fabiana | |
dc.contributor.author | Maknickienė, Nijolė | |
dc.date.accessioned | 2024-04-18T06:01:44Z | |
dc.date.available | 2024-04-18T06:01:44Z | |
dc.date.issued | 2023 | |
dc.date.submitted | 2023-02-26 | |
dc.identifier.isbn | 9786094763335 | en_US |
dc.identifier.issn | 2029-4441 | en_US |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/154012 | |
dc.description.abstract | This article focuses on fraudulent behaviour and patterns as well as ways of detecting such patterns by using Big Data. The study analyses scientific articles to examine types of financial fraud and their detection techniques as well as develops a model that is based on factors characterizing fraudulent credit card transactions made across USA. Regression analysis, correlation and descriptive statistics analysis is applied. Statistically significant results are found indicating a causal relationship between fraudulent transactions and transactions made in Alaska, during the month of October and on a Thursday. Although, the impact of these relationships is relatively small. Expanding the dataset with more numerical variables that could be used for identifying fraudulent transactions is advised for future research as to better the overall fit of the model. | en_US |
dc.format.extent | 9 p. | en_US |
dc.format.medium | Tekstas / Text | en_US |
dc.language.iso | en | en_US |
dc.relation.isreferencedby | Scopus | en_US |
dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/153869 | en_US |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source.uri | https://bm.vgtu.lt/index.php/verslas/2023/schedConf/presentations | en_US |
dc.subject | financial fraud | en_US |
dc.subject | fraud detection | en_US |
dc.subject | Big Data analytics | en_US |
dc.subject | credit card transaction fraud | en_US |
dc.subject | fraud detection methods | en_US |
dc.title | Factors influencing fraudulent transactions from Big Data perspective | en_US |
dc.type | Konferencijos publikacija / Conference paper | en_US |
dcterms.accessRights | Laisvai prieinamas / Openly available | en_US |
dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
dcterms.alternative | Finance and investment: new challenges and opportunities | en_US |
dcterms.dateAccepted | 2023-04-05 | |
dcterms.issued | 2023 | |
dcterms.license | CC BY | en_US |
dcterms.references | 27 | en_US |
dc.description.version | Taip / Yes | en_US |
dc.type.pubtype | P1d - Straipsnis recenzuotame konferencijos darbų leidinyje / Paper published in peer-reviewed conference publication | en_US |
dc.contributor.orcid | https://orcid.org/0000-0003-2785-5183, Maknickienė Nijolė | |
dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | en_US |
dc.contributor.department | Finansų inžinerijos katedra / Department of Financial Engineering | en_US |
dcterms.sourcetitle | 13th International Scientific Conference “Business and Management 2023” | en_US |
dc.description.volume | I | en_US |
dc.identifier.eisbn | 9786094763342 | en_US |
dc.identifier.eissn | 2029-929X | en_US |
dc.publisher.name | Vilnius Gediminas Technical University | en_US |
dc.publisher.name | Vilniaus Gedimino technikos universitetas | en_US |
dc.publisher.country | Lithuania | en_US |
dc.publisher.country | Lietuva | en_US |
dc.publisher.city | Vilnius | en_US |
dc.date.firstonline | 2023-06-07 | |
dc.identifier.doi | https://doi.org/10.3846/bm.2023.999 | en_US |