Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorIurasov, Aleksei
dc.contributor.authorStanelyte, Giedre
dc.date.accessioned2024-05-20T06:40:51Z
dc.date.available2024-05-20T06:40:51Z
dc.date.issued2020
dc.date.submitted2020-03-11
dc.identifier.isbn9786094762314en_US
dc.identifier.issn2029-4441en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/154233
dc.description.abstractThe demand prediction becoming an essential tool to remain or even lead in the competitionamong the retail businesses. A well-done demand prediction model could help retailer to track the level ofinventory, orders and sales in the most effective way in which the best results could be achieved. However,there are many different methods and opinions of how to create a demand prediction model. In this paper,we will analyse the most commonly used methods of Linear regression, Logistic Regression, ProbabilisticNeural Network, Bayesian Additive Regression Trees, Random Forest and Fuzzy Logic with their specificationsand limitations found in studies of authors. After review performed all methods will be compared accordingto characteristics selected. Moreover, in order to get more practical results the accuracy of LogisticRegression and Random Forest methods will be compared based on data of milk sales collected from retailnetwork. For constructing of decision support system for retail network, we need to go beyond demandprediction one-step to replenishment forecasting. It was concluded that there is no best method to forecastreplenishment and results can differ based on the data and conditions analysing. In every situation authorsseeking to select the method with the highest accuracy and the lowest number of errors possible. Limitationsof research: limited number of goods and stores included in the modelling.en_US
dc.format.extent10 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/154212en_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.source.urihttps://bm.vgtu.lt/index.php/verslas/2020/paper/view/604en_US
dc.subjectdemand predictionen_US
dc.subjectreplenishment forecastingen_US
dc.subjectretail networken_US
dc.subjectlogistic regressionen_US
dc.subjectrandom foresten_US
dc.titleStudy of different data science methods for demand prediction and replenishment forecasting at retail networken_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.alternativeBusiness technologies and sustainable entrepreneurshipen_US
dcterms.dateAccepted2020-05-05
dcterms.issued2020-05-08
dcterms.licenseCC BYen_US
dcterms.references40en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Managementen_US
dc.contributor.departmentVerslo technologijų ir verslininkystės katedra / Department of Business Technologies and Entrepreneurshipen_US
dcterms.sourcetitle11th International Scientific Conference “Business and Management 2020”en_US
dc.identifier.eisbn9786094762307en_US
dc.identifier.eissn2029-929Xen_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/bm.2020.604en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence