Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorStalovinaitė, Ilona
dc.contributor.authorMaknickienė, Nijolė
dc.contributor.authorMartinkutė-Kaulienė, Raimonda
dc.date.accessioned2024-05-22T07:40:44Z
dc.date.available2024-05-22T07:40:44Z
dc.date.issued2020
dc.date.submitted2020-04-05
dc.identifier.isbn9786094762314en_US
dc.identifier.issn2029-4441en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/154255
dc.description.abstractIn order to trade successfully investors are looking for the best method to determine possible di-rections of the price changes of financial means. The main objective of this paper is to evaluate the results of digital trading using different decision-making techniques. The paper examines deep learning technique known as Long Short – Term Memory (LSTM) neural network and parabolic stop and reverse (SAR) technical indicator as possible means for decision-making support. Based on an investigation of theoretical and practical aspects of digital trading and its support possibilities, investment portfolios in real-time “IQ Option” digital trading platform were created. Short-term results show that investment portfolios created using LSTM neural network performed better compared to the ones that were created using technical analysis. The study contributes to the development of new decision-making algorithms that can be used for forecasting of the results in the financial markets.en_US
dc.format.extent12 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/154212en_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.source.urihttps://bm.vgtu.lt/index.php/verslas/2020/paper/view/510en_US
dc.subjectdeep learningen_US
dc.subjectneural networken_US
dc.subjecttechnical analysisen_US
dc.subjectdigital tradingen_US
dc.subjectinvestment portfolioen_US
dc.titleInvestigation of decision making support in digital tradingen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.alternativeFinance: new challenges, new opportunitiesen_US
dcterms.dateAccepted2020-05-05
dcterms.issued2020-05-08
dcterms.licenseCC BYen_US
dcterms.references40en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Managementen_US
dc.contributor.facultyStrateginio planavimo, kokybės vadybos ir analizės centras / Strategic Planning, Quality Management and Analysis Centreen_US
dc.contributor.departmentFinansų inžinerijos katedra / Department of Financial Engineeringen_US
dcterms.sourcetitle11th International Scientific Conference “Business and Management 2020”en_US
dc.identifier.eisbn9786094762307en_US
dc.identifier.eissn2029-929Xen_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/bm.2020.510en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence