dc.rights.license | Kūrybinių bendrijų licencija / Creative Commons licence | en_US |
dc.contributor.author | Pratuzaitė, Greta | |
dc.contributor.author | Maknickienė, Nijolė | |
dc.date.accessioned | 2024-05-22T08:07:16Z | |
dc.date.available | 2024-05-22T08:07:16Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-04-16 | |
dc.identifier.isbn | 9786094762314 | en_US |
dc.identifier.issn | 2029-4441 | en_US |
dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/154256 | |
dc.description.abstract | Criminal financial behaviour is a problem for both banks and newly created fintech companies. Credit card fraud detection becomes a challenge for any such company. The aim of this paper is to com-pare ability to detect credit card fraud by four algorithmic methods: Generalized method of moments, K-nearest neighbour, Naive Bayes classification and Deep learning. The deep learning algorithm has been tuned to select key parameters so that fraud detection accuracy is the best. Five recognition accuracy pa-rameters and a cost calcualtions showed that the deep learning algorithm is the best fraud detection meth-od compared to other classification algorithms. A financial company reduces losses and increases custom-er confidence by using fraud prevention technologies. | en_US |
dc.format.extent | 8 p. | en_US |
dc.format.medium | Tekstas / Text | en_US |
dc.language.iso | en | en_US |
dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/154212 | en_US |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source.uri | https://bm.vgtu.lt/index.php/verslas/2020/paper/view/558 | en_US |
dc.subject | fraud detection | en_US |
dc.subject | classification | en_US |
dc.subject | credit cards | en_US |
dc.subject | FinTech | en_US |
dc.subject | confusion matrix | en_US |
dc.subject | loses | en_US |
dc.subject | deep learning | en_US |
dc.title | Investigation of credit cards fraud detection by using deep learning and classification algorithms | en_US |
dc.type | Konferencijos publikacija / Conference paper | en_US |
dcterms.accessRights | Laisvai prieinamas / Openly available | en_US |
dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
dcterms.alternative | Finance: new challenges, new opportunities | en_US |
dcterms.dateAccepted | 2020-05-06 | |
dcterms.issued | 2020-05-08 | |
dcterms.license | CC BY | en_US |
dcterms.references | 30 | en_US |
dc.description.version | Taip / Yes | en_US |
dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
dc.contributor.faculty | Verslo vadybos fakultetas / Faculty of Business Management | en_US |
dc.contributor.department | Finansų inžinerijos katedra / Department of Financial Engineering | en_US |
dcterms.sourcetitle | 11th International Scientific Conference “Business and Management 2020” | en_US |
dc.identifier.eisbn | 9786094762307 | en_US |
dc.identifier.eissn | 2029-929X | en_US |
dc.publisher.name | Vilnius Gediminas Technical University | en_US |
dc.publisher.name | Vilniaus Gedimino technikos universitetas | en_US |
dc.publisher.country | Lithuania | en_US |
dc.publisher.country | Lietuva | en_US |
dc.publisher.city | Vilnius | en_US |
dc.identifier.doi | https://doi.org/10.3846/bm.2020.558 | en_US |