Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorVosyliūtė, Ieva
dc.contributor.authorMaknickienė, Nijolė
dc.date.accessioned2024-07-11T07:35:21Z
dc.date.available2024-07-11T07:35:21Z
dc.date.issued2022
dc.date.submitted2022-02-02
dc.identifier.isbn9786094762888en_US
dc.identifier.issn2029-4441en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/154629
dc.description.abstractDue to increasing technical capabilities, financial fraud becomes more sophisticated and more difficult to detect. As there are various categories and typologies of financial fraud, different detection techniques may be applied. However, based on the data generated daily by financial organizations, a technical solution must be implemented. This paper presents a comprehensive literature review of financial fraud, the categorizations of financial fraud, and financial fraud detection with the particular focus on computational intelligence-based techniques. As outlined in the reviewed literature, money laundering is a multilayered crime involving several fraud typologies; therefore, it was selected to be analysed in this research. The purpose of the research is to investigate the synthetic dataset of the money laundering scheme to see whether additional patterns could be outlined, which would help financial organizations to recognize suspicious activity easier. To achieve this goal, computational intelligence - decision tree, was selected as a classification method to identify additional patterns. As a result, data classification provides new data parameters which are essential in improving accurate and efficient financial fraud detection.en_US
dc.format.extent7 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/154478en_US
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.source.urihttps://bm.vgtu.lt/index.php/verslas/2022/paper/view/787en_US
dc.subjectfinancial frauden_US
dc.subjectfraud detectionen_US
dc.subjectmoney launderingen_US
dc.subjectcomputational intelligenceen_US
dc.subjectmachine learningen_US
dc.subjectneural networken_US
dc.subjectdecision treeen_US
dc.titleInvestigation of financial fraud detection by using computational intelligenceen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.alternativeFinance and investments: new challenges and opportunitiesen_US
dcterms.dateAccepted2022-04-07
dcterms.issued2022-05-13
dcterms.licenseCC BYen_US
dcterms.references33en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Managementen_US
dc.contributor.departmentFinansų inžinerijos katedra / Department of Financial Engineeringen_US
dcterms.sourcetitle12th International Scientific Conference “Business and Management 2022”en_US
dc.identifier.eisbn9786094762895en_US
dc.identifier.eissn2029-929Xen_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/bm.2022.787en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence