Rodyti trumpą aprašą

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorMamak, Mustafa
dc.contributor.authorÜneş, Fatih
dc.contributor.authorKaya, Yunus Ziya
dc.contributor.authorDemirci, Mustafa
dc.date.accessioned2024-09-26T10:30:49Z
dc.date.available2024-09-26T10:30:49Z
dc.date.issued2017
dc.identifier.issn2029-7092en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/154933
dc.description.abstractEvapotranspiration (ET) estimation is a primary problem for irrigation engineers and hydraulic designers because it is an important part of hydrologic cycle. Even it is nonnegligible in hydraulic design calculations, it is not clear enough to estimate or calculate ET. There are some meteorological parameters which effect ET directly or indirectly such as Relative Humidity (RH), Solar Radiation (SR), Air Temperature (AT) and Wind Speed (U). In this study authors used Adaptive Neuro-Fuzzy Inference System (ANFIS) for prediction of ET and results are compared with Penman FAO 56 empirical formula. 1158 daily AT, SR, RH and U values are used to train ANFIS model and 385 daily values are used to test it. ANFIS model determination coefficient with daily observed ET values found as 0.909. Also test set values are used to calculate Penman FAO 56 formula and the determination coefficient of Penman FAO 56 with daily observed ET values found as 0.857. For the comparison of the ANFIS model and Penman FAO 56 formula results Mean Square Error (MSE) and Mean Absolute Error (MAE) are computed. According to the comparison it is understood that ANFIS model has better performance than Penman FAO 56 empirical formula for the prediction of daily ET.en_US
dc.format.extent5 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/154497en_US
dc.rightsAttribution-NonCommercial 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.source.urihttp://enviro.vgtu.lt/index.php/enviro/2017/paper/view/438en_US
dc.subjectevapotranspirationen_US
dc.subjectpenman FAO 56en_US
dc.subjectartificial intelligenten_US
dc.subjectforecastingen_US
dc.subjecthydrologic modellingen_US
dc.titleEvapotranspiration prediction using adaptive neuro-fuzzy inference system and penman FAO 56 equation for St. Johns, FL, USAen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.alternativeWater engineeringen_US
dcterms.issued2017-04-28
dcterms.licenseCC BY NCen_US
dcterms.references11en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionOsmaniye Korkut Ata Universityen_US
dc.contributor.institutionIskenderun Technical Universityen_US
dcterms.sourcetitle10th International Conference “Environmental Engineering” (ICEE-2017)en_US
dc.identifier.eisbn9786094760440en_US
dc.identifier.eissn2029-7092en_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/enviro.2017.085en_US


Šio įrašo failai

Thumbnail
Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą

Kūrybinių bendrijų licencija / Creative Commons licence
Išskyrus atvejus, kai nurodyta kitaip, šio įrašo licencija apibrėžiama taipKūrybinių bendrijų licencija / Creative Commons licence