Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorNowak Da Costa, Joanna
dc.contributor.authorBielecka, Elzbieta
dc.contributor.authorCalka, Beata
dc.date.accessioned2024-10-11T10:50:35Z
dc.date.available2024-10-11T10:50:35Z
dc.date.issued2017
dc.identifier.issn2029-7092en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/155173
dc.description.abstractThe aim of this study is to describe uncertainty of the Global Rural-Urban Mapping Project (GRUMP) data based on Polish population reference grid created by the Central Statistical Office of Poland, using INSPIRE grid coding system. The adopted population data uncertainty analysis methodology combined three different approaches, i.e. simple change detection algorithm to obtain discrepancies at the grid cell level, statistical analytical approach to investigate these discrepancies’ frequency distribution, and GIS approach to analyse spatial pattern of distinguished population difference classes. The results showed significant differences in population count at the grid cell level. The maximum magnitude of GRUMP vs. Polish Reference Grid overestimation equals 4087 people per 1 sq. km, while the underestimation equals 20,086 people per 1 sq. km. Very few grid cell shows no difference in population count, i.e. 1.5% of total grid cell count. GRUMP data overestimates Polish total population by 0.15%, while it underestimates the average population density by 50%. The highest population underestimations were identified in the centers of the cities, while suburban areas were characterised by the large and regular population overestimations within GRUMP dataset. These GRUMP dataset imperfections can be attributed to country-specific administrative divisions and to the varying effectiveness of the urban centers delimitation mapping using the night sky light intensity, including blooming effects as well as not frequently illuminated small settlements.en_US
dc.format.extent7 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/154497en_US
dc.rightsAttribution-NonCommercial 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.source.urihttp://enviro.vgtu.lt/index.php/enviro/2017/paper/view/166en_US
dc.subjectGRUMPen_US
dc.subjectdata uncertaintyen_US
dc.subjectpopulation densityen_US
dc.subjectgrid dataen_US
dc.subjectcensus population dataen_US
dc.titleUncertainty quantification of the Global Rural-Urban Mapping Project over Polish census dataen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.alternativeTechnologies of geodesy and cadastreen_US
dcterms.issued2017-04-28
dcterms.licenseCC BY NCen_US
dcterms.references21en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionMilitary University of Technologyen_US
dcterms.sourcetitle10th International Conference “Environmental Engineering” (ICEE-2017)en_US
dc.identifier.eisbn9786094760440en_US
dc.identifier.eissn2029-7092en_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.description.fundingorganizationMilitary University of Technologyen_US
dc.description.fundingorganizationFaculty of Civil Engineering and Geodesyen_US
dc.description.fundingorganizationInstitute of Geodesyen_US
dc.description.grantnumber933/2016en_US
dc.identifier.doihttps://doi.org/10.3846/enviro.2017.221en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence