Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorMrówczyńska, Maria
dc.contributor.authorSztubecki, Jacek
dc.date.accessioned2024-10-14T07:36:00Z
dc.date.available2024-10-14T07:36:00Z
dc.date.issued2017
dc.identifier.issn2029-7092en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/155202
dc.description.abstractThis article attempts to analyse and predict vertical displacements of measurement-and-control network points located on civil structures founded on expansive soils, using artificial neural networks. Geodetic monitoring of civil structures consists in regular measurements of control point networks and interpretation of results. The obtained values of displacement provide sets of significant data which enable determination of the influence of changes in ground water conditions of the subsoil on the deformation processes occurring in structures founded on it. Using such data sets, it is possible to draw conclusions regarding the dynamics of the occurrence of deformation and to develop a geometric model of displacements. In recent years, methods of prediction based on artificial intelligence have been increasingly prominent. Neural networks and evolutionary algorithms, which can supplement each other, make advanced tools applied in the process of prediction of deformations. In order to forecast displacements of control points, demonstrating changes in a civil structure, multi layer artificial neural networks are employed in this article, taught using the method of error backpropagation and gradient optimization methods. The analysed results in the form of height differences were obtained through a series of measurements on a civil structure, taken by means of precise levelling at monthly intervals.en_US
dc.format.extent7 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/154497en_US
dc.rightsAttribution-NonCommercial 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.source.urihttp://enviro.vgtu.lt/index.php/enviro/2017/paper/view/362en_US
dc.subjectsurveyingen_US
dc.subjectvertical displacementsen_US
dc.subjectdisplacement modelen_US
dc.subjectneural networksen_US
dc.titlePrediction of vertical displacements in civil structures using artificial neural networksen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.alternativeTechnologies of geodesy and cadastreen_US
dcterms.issued2017-04-28
dcterms.references10en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionUniversity of Zielona Góraen_US
dc.contributor.institutionUniversity of Technology and Life Sciences in Bydgoszczen_US
dcterms.sourcetitle10th International Conference “Environmental Engineering” (ICEE-2017)en_US
dc.identifier.eisbn9786094760440en_US
dc.identifier.eissn2029-7092en_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/enviro.2017.220en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence