Rodyti trumpą aprašą

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorHorák, Jakub
dc.contributor.authorŠuleř, Petr
dc.contributor.authorVrbka, Jaromír
dc.date.accessioned2024-11-18T14:19:01Z
dc.date.available2024-11-18T14:19:01Z
dc.date.issued2019
dc.identifier.isbn9786094761614en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/155718
dc.description.abstractPurpose – artificial neural networks are compared with mixed conclusions in terms of forecasting performance. The most researches indicate that deep-learning models are better than traditional statistical or mathematical models. The purpose of the article is to compare the accuracy of equalizing time series by means of regression analysis and neural networks on the example of the USA export to China. The aim is to show the possible uses and advantages of neural networks in practice. Research methodology – the period for which the data (USA export to the PRC) are available is the monthly balance starting from January 1985 to August 2018. First of all, linear regression as the relatively simple mathematical method is carried out. Subsequently, neural networks as the computational models used in artificial intelligence are used for regression. Findings – in terms of linear regression, the most suitable one appeared to be the curve obtained by means of the least squares methods by negative-exponential smoothing, and the curve obtained by means of the distance-weighted least squares method. In terms of neural networks, all retained structures appeared to be applicable in practice. Artificial neural networks have better representational power than traditional models. Research limitations – the simplification (quite a significant one) appears both in the cases of linear regression and regression by means of neural networks. We work only with two variables – input variable (time) and output variable (USA export to the PRC). Practical implications – in practice, the results – especially the method of artificial neural networks – can be used in the measurement and prediction of the development of exports, but especially in the short term. It can be stated that due to great simplification of the reality it isnʼt possible to predict extraordinary situations and their effect on the USA export to the PRC. Originality/Value – the article focuses on the comparison of two statistical methods, in particular, artificial intelligence is not used in such applications. However, in many economic industries, it has proven better results. It is found that artificial neural networks are able to effectively learn dependencies in and between the time series in the form of export development data.en_US
dc.format.extent11 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/155623en_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.source.urihttp://cibmee.vgtu.lt/index.php/verslas/2019/paper/view/428en_US
dc.subjectartificial neural networksen_US
dc.subjectregression analysisen_US
dc.subjecttime seriesen_US
dc.subjectexporten_US
dc.subjectpredictionen_US
dc.titleComparison of neural networks and regression time series when predicting the export development from the USA to PRCen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.alternativeContemporary issues in economics engineeringen_US
dcterms.issued2019-05-10
dcterms.licenseCC BYen_US
dcterms.references23en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionInstitute of Technology and Business in České Budějoviceen_US
dcterms.sourcetitleInternational Scientific Conference „Contemporary Issues in Business, Management and Economics Engineering ‘2019“en_US
dc.identifier.eisbn9786094761621en_US
dc.identifier.eissn2538-8711en_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/cibmee.2019.017en_US


Šio įrašo failai

Thumbnail
Thumbnail

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą

Kūrybinių bendrijų licencija / Creative Commons licence
Išskyrus atvejus, kai nurodyta kitaip, šio įrašo licencija apibrėžiama taipKūrybinių bendrijų licencija / Creative Commons licence