Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorMaknickienė, Nijolė
dc.contributor.authorSabaliauskas, Darius
dc.date.accessioned2024-11-19T09:58:53Z
dc.date.available2024-11-19T09:58:53Z
dc.date.issued2019
dc.identifier.isbn9786094761614en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/155736
dc.description.abstractPurpose – the purpose of the article is to compare the formation of portfolios and to make predictions about how it will change. Research methodology – for analysis, optimization and predictions use the neural network models that are created using a neural recurrent long short-term memory cell architecture network and Markowitz’s modern portfolio theory Findings – this article compares the portfolios of IT field with different instruments and level of optimization. Research limitations – the main limit of the article is that only historical data is used. The real-time investment would check the performance of the portfolio creation methodology under uncertain conditions. Practical implications – the results of the article give opportunities for investors and speculators in the finance market by using neural networks for forming investment portfolios, as well as analysing and predicting their changes. Originality/Value – the growing high-tech use in financial markets changes our habits and our understanding of the surrounding world. The financial sphere has also had several changes, and it has undergone major changes that will change the approach to producing financial forecasts and analysis. Including Artificial Intelligence in these processes brings new innovative opportunities.en_US
dc.format.extent9 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/155623en_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.source.urihttp://cibmee.vgtu.lt/index.php/verslas/2019/paper/view/206en_US
dc.subjectartificial intelligenceen_US
dc.subjectneural networken_US
dc.subjectportfolioen_US
dc.subjectfinancial predictionsen_US
dc.subjectportfolio optimizationen_US
dc.subjectLong Short Term Memory (LSTM)en_US
dc.titleInvestment portfolio analysis by using neural networksen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.alternativeContemporary financial managementen_US
dcterms.issued2019-05-10
dcterms.licenseCC BYen_US
dcterms.references26en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyVerslo vadybos fakultetas / Faculty of Business Managementen_US
dc.contributor.departmentFinansų inžinerijos katedra / Department of Financial Engineeringen_US
dcterms.sourcetitleInternational Scientific Conference „Contemporary Issues in Business, Management and Economics Engineering ‘2019“en_US
dc.identifier.eisbn9786094761621en_US
dc.identifier.eissn2538-8711en_US
dc.publisher.nameVilnius Gediminas Technical Universityen_US
dc.publisher.nameVilniaus Gedimino technikos universitetasen_US
dc.publisher.countryLithuaniaen_US
dc.publisher.countryLietuvaen_US
dc.publisher.cityVilniusen_US
dc.identifier.doihttps://doi.org/10.3846/cibmee.2019.028en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence