Show simple item record

dc.rights.licenseKūrybinių bendrijų licencija / Creative Commons licenceen_US
dc.contributor.authorDytczaka, Mirosław
dc.contributor.authorGinda, Grzegorz
dc.date.accessioned2025-03-26T11:09:39Z
dc.date.available2025-03-26T11:09:39Z
dc.date.issued2013
dc.identifier.issn1877-7058en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/157071
dc.description.abstractA bi-level approach for optimisation of a construction project is discussed in the paper. Considered optimisation problem deals with identification of optimal project and a corresponding optimal schedule. Project structure is defined by applied order of technological operations. Application of decomposition-coordination principle facilitates problem solution. We therefore obtain tasks which belong to 2 distinct optimisation levels. The lower optimisation task level is devoted to optimal allocation of execution modes to operations while assuming considered project structures. The global optimisation task level pertains to choice of the best structure for a construction project. Solution of lower level tasks are applied in this regard. The main difficulty in global project schedule optimisation results from multiplicity of feasible construction project structures and a need for solution of lower level tasks. We generally consider application of Monte Carlo simulation (MC) for generating feasible project structures. Mixed linear programming (MILP) and MC is the applied to solve lower level tasks. We also apply metaheurstics combined with MILP to solve lower level tasks while generating feasible project structures. Effects of application of presented approaches for solving lower level task solution approaches are finally compared.en_US
dc.format.extent10 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/156173en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S1877705813007650en_US
dc.subjectconstructionen_US
dc.subjectscheduleen_US
dc.subjectoptimisationen_US
dc.subjectstructureen_US
dc.subjectidentificationen_US
dc.subjecttimeen_US
dc.subjectcosten_US
dc.subjectPareto efficiencyen_US
dc.subjectdecompositionen_US
dc.subjectcompositionen_US
dc.subjectlocal tasken_US
dc.subjectsolutionen_US
dc.titleLower-level decision task solution while optimising a construction project scheduleen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accessRightsLaisvai prieinamas / Openly availableen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2013-05-17
dcterms.licenseCC BY NC NDen_US
dcterms.references20en_US
dc.description.versionTaip / Yesen_US
dc.type.pubtypeK1a - Monografija / Monographen_US
dc.contributor.institutionBiałystok University of Technologyen_US
dc.contributor.institutionUniversity of Bielsko-Białaen_US
dcterms.sourcetitleProcedia Engineeringen_US
dc.description.volumevol. 57en_US
dc.publisher.nameElsevieren_US
dc.publisher.countryUnited Kingdomen_US
dc.publisher.cityOxforden_US
dc.identifier.doihttps://doi.org/10.1016/j.proeng.2013.04.035en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Kūrybinių bendrijų licencija / Creative Commons licence
Except where otherwise noted, this item's license is described as Kūrybinių bendrijų licencija / Creative Commons licence